56,363 research outputs found

    Potential contributions of noncontact atomic force microscopy for the future Casimir force measurements

    Full text link
    Surface electric noise, i.e., the non-uniform distribution of charges and potentials on a surface, poses a great experimental challenge in modern precision force measurements. Such a challenge is encountered in a number of different experimental circumstances. The scientists employing atomic force microscopy (AFM) have long focused their efforts to understand the surface-related noise issues via variants of AFM techniques, such as Kelvin probe force microscopy or electric force microscopy. Recently, the physicists investigating quantum vacuum fluctuation phenomena between two closely-spaced objects have also begun to collect experimental evidence indicating a presence of surface effects neglected in their previous analyses. It now appears that the two seemingly disparate science communities are encountering effects rooted in the same surface phenomena. In this report, we suggest specific experimental tasks to be performed in the near future that are crucial not only for fostering needed collaborations between the two communities, but also for providing valuable data on the surface effects in order to draw the most realistic conclusion about the actual contribution of the Casimir force (or van der Waals force) between a pair of real materials.Comment: The paper appeared in the Proceedings to the 12th International Conference on Noncontact Atomic Force Microscopy (NC-AFM 2009) and Casimir 2009 Satellite Worksho

    Electron Removal Self Energy and its application to Ca2CuO2Cl2

    Full text link
    We propose using the self energy defined for the electron removal Green's function. Starting from the electron removal Green's function, we obtained expressions for the removal self energy Sigma^ER (k,omega) that are applicable for non-quasiparticle photoemission spectral functions from a single band system. Our method does not assume momentum independence and produces the self energy in the full k-omega space. The method is applied to the angle resolved photoemission from Ca_2CuO_2Cl_2 and the result is found to be compatible with the self energy value from the peak width of sharp features. The self energy is found to be only weakly k-dependent. In addition, the Im Sigma shows a maximum at around 1 eV where the high energy kink is located.Comment: 5 pages, 3 figure

    A Methodology for Simulated Experiments in Interactive Search

    Get PDF
    Interactive information retrieval has received much attention in recent years, e.g. [7]. Furthermore, increased activity in developing interactive features in search systems used across existing popular Web search engines suggests that interactive systems are being recognised as a promising next step in assisting information search. One of the most challenging problems with interactive systems however remains evaluation. We describe the general specifications of a methodology for conducting controlled and reproducible experiments in the context of interactive search. It was developed in the AutoAdapt project1 focusing on search in intranets, but the methodology is more generic than that and can be applied to interactive Web search as well. The goal of this methodology is to evaluate the ability of different algorithms to produce domain models that provide accurate suggestions for query modifications. The AutoAdapt project investigates the application of automatically constructed adaptive domain models for providing suggestions for query modifications to the users of an intranet search engine. This goes beyond static models such as the one employed to guide users who search the Web site of the University of Essex which is based on a domain model that has been built in advance using the documents’ markup structure

    Using domain models for context-rich user logging

    Get PDF
    This paper describes the prototype interactive search sys- Tem being developed within the AutoAdapt project1. The AutoAdapt project seeks to enhance the user experience in searching for information and navigating within selected do- main collections by providing structured representations of domain knowledge to be directly explored, logged, adapted and updated to refject user needs. We propose that this structure is a valuable stepping-stone in context-rich logging of user activities within the information seeking environment. Here we describe the primary components that have been implemented and the user interactions that it will support

    Moving towards Adaptive Search

    Get PDF
    Information retrieval has become very popular over the last decade with the advent of the Web. Nevertheless, searching on the Web is very different to searching on smaller, often more structured collections such as intranets and digital libraries. Such collections are the focus of the recently started AutoAdapt project1. The project seeks to aid user search by providing well-structured domain knowledge to assist query modification and navigation. There are two challenges: acquiring the domain knowledge and adapting it automatically to the specific interest of the user community. At the workshop we will demonstrate an implemented prototype that serves as a starting point on the way to truly adaptive search

    Accurate determination of the scattering length of metastable Helium atoms using dark resonances between atoms and exotic molecules

    Full text link
    We present a new measurement of the s-wave scattering length a of spin-polarized helium atoms in the 2^3S_1 metastable state. Using two-photon photoassociation spectroscopy and dark resonances we measure the energy E_{v=14}= -91.35 +/- 0.06 MHz of the least bound state v=14 in the interaction potential of the two atoms. We deduce a value of a = 7.512 +/- 0.005 nm, which is at least one hundred times more precise than the best previous determinations and is in disagreement with some of them. This experiment also demonstrates the possibility to create exotic molecules binding two metastable atoms with a lifetime of the order of 1 microsecond.Comment: 4 pages, 4 figure

    Maximizing Welfare in Social Networks under a Utility Driven Influence Diffusion Model

    Full text link
    Motivated by applications such as viral marketing, the problem of influence maximization (IM) has been extensively studied in the literature. The goal is to select a small number of users to adopt an item such that it results in a large cascade of adoptions by others. Existing works have three key limitations. (1) They do not account for economic considerations of a user in buying/adopting items. (2) Most studies on multiple items focus on competition, with complementary items receiving limited attention. (3) For the network owner, maximizing social welfare is important to ensure customer loyalty, which is not addressed in prior work in the IM literature. In this paper, we address all three limitations and propose a novel model called UIC that combines utility-driven item adoption with influence propagation over networks. Focusing on the mutually complementary setting, we formulate the problem of social welfare maximization in this novel setting. We show that while the objective function is neither submodular nor supermodular, surprisingly a simple greedy allocation algorithm achieves a factor of (1−1/e−ϵ)(1-1/e-\epsilon) of the optimum expected social welfare. We develop \textsf{bundleGRD}, a scalable version of this approximation algorithm, and demonstrate, with comprehensive experiments on real and synthetic datasets, that it significantly outperforms all baselines.Comment: 33 page

    Pseudo-binary phase diagram for Zr-based in situ ß phase composites

    Get PDF
    The pseudo-binary (quasi-equilibrium) phase diagram for Zr-based bulk metallic glasses with crystalline in situ precipitates (ß phase) has been constructed from high-temperature phase information and chemical composition analysis. The phase evolution was detected in situ by high-energy synchrotron x-ray diffraction followed by Rietveld analysis of the data for volume fraction estimation. The phase diagram delineates phase fields and allows the control of phase fractions. Combined with related previous work by the authors, this diagram offers a unique opportunity to control both the morphology and volume of the dendritic ß phase precipitates to enhance the properties of the composites

    Shot Noise and Full Counting Statistics from Non-equilibrium Plasmons in Luttinger-Liquid Junctions

    Full text link
    We consider a quantum wire double junction system with each wire segment described by a spinless Luttinger model, and study theoretically shot noise in this system in the sequential tunneling regime. We find that the non-equilibrium plasmonic excitations in the central wire segment give rise to qualitatively different behavior compared to the case with equilibrium plasmons. In particular, shot noise is greatly enhanced by them, and exceeds the Poisson limit. We show that the enhancement can be explained by the emergence of several current-carrying processes, and that the effect disappears if the channels effectively collapse to one due to, {\em e.g.}, fast plasmon relaxation processes.Comment: 9 pages; IOP Journal style; several changes in the tex
    • …
    corecore