179,231 research outputs found
Cooperative emission of a pulse train in an optically thick scattering medium
An optically thick cold atomic cloud emits a coherent flash of light in the
forward direction when the phase of an incident probe field is abruptly
changed. Because of cooperativity, the duration of this phenomena can be much
shorter than the excited lifetime of a single atom. Repeating periodically the
abrupt phase jump, we generate a train of pulses with short repetition time,
high intensity contrast and high efficiency. In this regime, the emission is
fully governed by cooperativity even if the cloud is dilute.Comment: 5 pages, 3 figure
Measurements of Grain Motion in a Dense, Three-Dimensional Granular Fluid
We have used an NMR technique to measure the short-time, three-dimensional
displacement of grains in a system of mustard seeds vibrated vertically at 15g.
The technique averages over a time interval in which the grains move
ballistically, giving a direct measurement of the granular temperature profile.
The dense, lower portion of the sample is well described by a recent
hydrodynamic theory for inelastic hard spheres. Near the free upper surface the
mean free path is longer than the particle diameter and the hydrodynamic
description fails.Comment: 4 pages, 4 figure
Revealing local failed supernovae with neutrino telescopes
We study the detectability of neutrino bursts from nearby direct black
hole-forming collapses (failed supernovae) at Megaton detectors. Due to their
high energetics, these bursts could be identified - by the time coincidence of
N >= 2 or N >= 3 events within a ~ 1 s time window - from as far as ~ 4-5 Mpc
away. This distance encloses several supernova-rich galaxies, so that failed
supernova bursts could be detected at a rate of up to one per decade,
comparable to the expected rate of the more common, but less energetic, neutron
star-forming collapses. Thus, the detection of a failed supernova within the
lifetime of a Mt detector is realistic. It might give the first evidence of
direct black hole formation, with important implications on the physics of this
phenomenon.Comment: LaTeX, 4 pages, 4 figures; minor changes to the text, results
unchange
The structural, mechanical, electronic, optical and thermodynamic properties of t-XAs (X Si, Ge and Sn) by first-principles calculations
The structural, mechanical, electronic, optical and thermodynamic properties
of the t-XAs (X Si, Ge and Sn) with
tetragonal structure have been investigated by first principles calculations.
Our calculated results show that these compounds are mechanically and
dynamically stable. By the study of elastic anisotropy, it is found that the
anisotropic of the t-SnAs is stronger than that
of t-SiAs and
t-GeAs. The band structures and density of states
show that the t-XAs (Si, Ge and Sn) are
semiconductors with narrow band gaps. Based on the analyses of electron density
difference, in t-XAs As atoms get electrons, X
atoms lose electrons. The calculated static dielectric constants,
, are 15.5, 20.0 and 15.1 eV for
t-XAs (X Si, Ge and Sn), respectively. The
Dulong-Petit limit of t-XAs is about 10 J
molK. The thermodynamic stability successively
decreases from t-SiAs to
t-GeAs to t-SnAs.Comment: 14 pages, 10 figures, 6 table
Stable embedded solitons
Stable embedded solitons are discovered in the generalized third-order
nonlinear Schroedinger equation. When this equation can be reduced to a
perturbed complex modified KdV equation, we developed a soliton perturbation
theory which shows that a continuous family of sech-shaped embedded solitons
exist and are nonlinearly stable. These analytical results are confirmed by our
numerical simulations. These results establish that, contrary to previous
beliefs, embedded solitons can be robust despite being in resonance with the
linear spectrum.Comment: 2 figures. To appear in Phys. Rev. Let
Surface roughness and interfacial slip boundary condition for quartz crystal microbalances
The response of a quartz crystal microbalance (QCM) is considered using a wave equation for the substrate and the Navier-Stokes equations for a finite liquid layer under a slip boundary condition. It is shown that when the slip length to shear wave penetration depth is small, the first order effect of slip is only present in the frequency response. Importantly, in this approximation the frequency response satisfies an additivity relation with a net response equal to a Kanazawa liquid term plus an additional Sauerbrey "rigid" liquid mass. For the slip length to result in an enhanced frequency decrease compared to a no-slip boundary condition, it is shown that the slip length must be negative so that the slip plane is located on the liquid side of the interface. It is argued that the physical application of such a negative slip length could be to the liquid phase response of a QCM with a completely wetted rough surface. Effectively, the model recovers the starting assumption of additivity used in the trapped mass model for the liquid phase response of a QCM having a rough surface. When applying the slip boundary condition to the rough surface problem, slip is not at a molecular level, but is a formal hydrodynamic boundary condition which relates the response of the QCM to that expected from a QCM with a smooth surface. Finally, possible interpretations of the results in terms of acoustic reflectivity are developed and the potential limitations of the additivity result should vapour trapping occur are discussed
- …