90,638 research outputs found
Phenomenological Analysis of and Elastic Scattering Data in the Impact Parameter Space
We use an almost model-independent analytical parameterization for and
elastic scattering data to analyze the eikonal, profile, and
inelastic overlap functions in the impact parameter space. Error propagation in
the fit parameters allows estimations of uncertainty regions, improving the
geometrical description of the hadron-hadron interaction. Several predictions
are shown and, in particular, the prediction for inelastic overlap
function at TeV shows the saturation of the Froissart-Martin
bound at LHC energies.Comment: 15 pages, 16 figure
Scalable Text and Link Analysis with Mixed-Topic Link Models
Many data sets contain rich information about objects, as well as pairwise
relations between them. For instance, in networks of websites, scientific
papers, and other documents, each node has content consisting of a collection
of words, as well as hyperlinks or citations to other nodes. In order to
perform inference on such data sets, and make predictions and recommendations,
it is useful to have models that are able to capture the processes which
generate the text at each node and the links between them. In this paper, we
combine classic ideas in topic modeling with a variant of the mixed-membership
block model recently developed in the statistical physics community. The
resulting model has the advantage that its parameters, including the mixture of
topics of each document and the resulting overlapping communities, can be
inferred with a simple and scalable expectation-maximization algorithm. We test
our model on three data sets, performing unsupervised topic classification and
link prediction. For both tasks, our model outperforms several existing
state-of-the-art methods, achieving higher accuracy with significantly less
computation, analyzing a data set with 1.3 million words and 44 thousand links
in a few minutes.Comment: 11 pages, 4 figure
Hypervelocity binary stars: smoking gun of massive binary black holes
The hypervelocity stars recently found in the Galactic halo are expelled from
the Galactic center through interactions between binary stars and the central
massive black hole or between single stars and a hypothetical massive binary
black hole. In this paper, we demonstrate that binary stars can be ejected out
of the Galactic center with velocities up to 10^3 km/s, while preserving their
integrity, through interactions with a massive binary black hole. Binary stars
are unlikely to attain such high velocities via scattering by a single massive
black hole or through any other mechanisms. Based on the above theoretical
prediction, we propose a search for binary systems among the hypervelocity
stars. Discovery of hypervelocity binary stars, even one, is a definitive
evidence of the existence of a massive binary black hole in the Galactic
center.Comment: 5 pages, 3 figures, shortened version, ApJL in pres
Fault-tolerant linear optics quantum computation by error-detecting quantum state transfer
A scheme for linear optical implementation of fault-tolerant quantum
computation is proposed, which is based on an error-detecting code. Each
computational step is mediated by transfer of quantum information into an
ancilla system embedding error-detection capability. Photons are assumed to be
subjected to both photon loss and depolarization, and the threshold region of
their strengths for scalable quantum computation is obtained, together with the
amount of physical resources consumed. Compared to currently known results, the
present scheme reduces the resource requirement, while yielding a comparable
threshold region.Comment: 9 pages, 7 figure
Fano Effect through Parallel-coupled Double Coulomb Islands
By means of the non-equilibrium Green function and equation of motion method,
the electronic transport is theoretically studied through a parallel-coupled
double quantum dots(DQD) in the presence of the on-dot Coulomb correlation,
with an emphasis put on the quantum interference. It has been found that in the
Coulomb blockage regime, the quantum interference between the bonding and
antiboding DQD states or that between their Coulomb blockade counterparts may
result in the Fano resonance in the conductance spectra, and the Fano peak
doublet may be observed under certain non-equilibrium condition. The
possibility of manipulating the Fano lineshape is predicted by tuning the
dot-lead coupling and magnetic flux threading the ring connecting the dots and
leads. Similar to the case without Coulomb interaction, the direction of the
asymmetric tail of Fano lineshape can be flipped by the external field. Most
importantly, by tuning the magnetic flux, the function of four relevant states
can be interchanged, giving rise to the swap effect, which might play a key
role as a qubit in the quantum computation.Comment: 7 pages, 5 figure
Phase structures of strong coupling lattice QCD with overlap fermions at finite temperature and chemical potential
We perform the first study of lattice QCD with overlap fermions at finite
temperature and chemical potential . We start from the Taylor expanded
overlap fermion action, and derive in the strong coupling limit the effective
free energy by mean field approximation. On the () plane and in the
chiral limit, there is a tricritical point, separating the second order chiral
phase transition line at small and large , and first order chiral
phase transition line at large and small
- …