11,151 research outputs found
Thermal activation energy of 3D vortex matter in NaFe1-xCoxAs (x=0.01, 0.03 and 0.07) single crystals
We report on the thermally activated flux flow dependency on the doping
dependent mixed state in NaFe1-xCoxAs (x=0.01, 0.03, and 0.07) crystals using
the magnetoresistivity in the case of B//c-axis and B//ab-plane. It was found
clearly that irrespective of the doping ratio, magnetoresistivity showed a
distinct tail just above the Tc, offset associated with the thermally activated
flux flow (TAFF) in our crystals. Furthermore, in TAFF region the temperature
dependence of the activation energy follows the relation U(T, B)=U_0 (B)
(1-T/T_c )^q with q=1.5 in all studied crystals. The magnetic field dependence
of the activation energy follows a power law of U_0 (B)~B^(-{\alpha}) where the
exponent {\alpha} is changed from a low value to a high value at a crossover
field of B=~2T, indicating the transition from collective to plastic pinning in
the crystals. Finally, it is suggested that the 3D vortex phase is the dominant
phase in the low-temperature region as compared to the TAFF region in our
series samples
A Resolvent Approach to Metastability
We provide a necessary and sufficient condition for the metastability of a
Markov chain, expressed in terms of a property of the solutions of the
resolvent equation. As an application of this result, we prove the
metastability of reversible, critical zero-range processes starting from a
configuration
Quasiparticle Interference on the Surface of Topological Crystalline Insulator Pb(1-x)Sn(x)Se
Topological crystalline insulators represent a novel topological phase of
matter in which the surface states are protected by discrete point
group-symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy
is one possible realization of this phase which undergoes a topological phase
transition upon changing the lead content. We used scanning tunneling
microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) to probe
the surface states on (001) PbSnSe in the topologically
non-trivial (x=0.23) and topologically trivial (x=0) phases. We observed
quasiparticle interference with STM on the surface of the topological
crystalline insulator and demonstrated that the measured interference can be
understood from ARPES studies and a simple band structure model. Furthermore,
our findings support the fact that PbSnSe and PbSe have
different topological nature.Comment: 5 pages, 4 figure
Spectroscopy of a narrow-line laser cooling transition in atomic dysprosium
The laser cooling and trapping of ultracold neutral dysprosium has been
recently demonstrated using the broad, open 421-nm cycling transition.
Narrow-line magneto-optical trapping of Dy on longer wavelength transitions
would enable the preparation of ultracold Dy samples suitable for loading
optical dipole traps and subsequent evaporative cooling. We have identified the
closed 741-nm cycling transition as a candidate for the narrow-line cooling of
Dy. We present experimental data on the isotope shifts, the hyperfine constants
A and B, and the decay rate of the 741-nm transition. In addition, we report a
measurement of the 421-nm transition's linewidth, which agrees with previous
measurements. We summarize the laser cooling characteristics of these
transitions as well as other narrow cycling transitions that may prove useful
for cooling Dy.Comment: 6+ pages, 5 figures, 5 table
Vertically-aligned graphene flakes on nanoporous templates: Morphology, thickness, and defect level control by pre-treatment
© 2014 National Institute for Materials Science. Various morphologies of the vertically-aligned graphene flakes were fabricated on the nanoporous templates treated with metal ions in solutions, as well as coated with a thin gold layer and activated in the low-temperature Ar plasma. The thickness and level of structural defects in the graphene flakes could be effectively controlled by a proper selection of the pre-treatment method. We have also demonstrated that various combinations of the flake thickness and defect levels can be obtained, and the morphology and density of the graphene pattern can be effectively controlled. The result obtained could be of interest for various applications requiring fabrication of large graphene networks with controllable properties
One-Dimensional Confinement and Enhanced Jahn-Teller Instability in LaVO
Ordering and quantum fluctuations of orbital degrees of freedom are studied
theoretically for LaVO in spin-C-type antiferromagnetic state. The
effective Hamiltonian for the orbital pseudospin shows strong one-dimensional
anisotropy due to the negative interference among various exchange processes.
This significantly enhances the instability toward lattice distortions for the
realistic estimate of the Jahn-Teller coupling by first-principle LDA+
calculations, instead of favoring the orbital singlet formation. This explains
well the experimental results on the anisotropic optical spectra as well as the
proximity of the two transition temperatures for spin and orbital orderings.Comment: 4 pages including 4 figure
Jahn-Teller distortions and phase separation in doped manganites
A "minimal model" of the Kondo-lattice type is used to describe a competition
between the localization and metallicity in doped manganites and related
magnetic oxides with Jahn-Teller ions. It is shown that the number of itinerant
charge carriers can be significantly lower than that implied by the doping
level x. A strong tendency to the phase separation is demonstrated for a wide
range of intermediate doping concentrations vanishing at low and high doping.
The phase diagram of the model in the x-T plane is constructed. At low
temperatures, the system is in a state with a long-range magnetic order:
antiferromagnetic (AF), ferromagnetic (FM), or AF-FM phase separated (PS)
state. At high temperatures, there can exist two types of the paramagnetic (PM)
state with zero and nonzero density of the itinerant electrons. In the
intermediate temperature range, the phase diagram includes different kinds of
the PS states: AF-FM, FM-PM, and PM with different content of itinerant
electrons. The applied magnetic field changes the phase diagram favoring the FM
ordering. It is shown that the variation of temperature or magnetic field can
induce the metal-insulator transition in a certain range of doping levels.Comment: 14 pages, 7 figures, submitted to Phys. Rev. B.; v.2 contains the
changes introduced according to comments of the PRB Referees; in v. 3, some
misprints are correcte
Tunable magnetic interaction at the atomic scale in oxide heterostructures
We report on a systematic study of a number of structurally identical but
chemically distinct transition metal oxides in order to determine how the
material-specific properties such as the composition and the strain affect the
properties at the interface of heterostructures. Our study considers a series
of structures containing two layers of ferromagnetic SrRuO3, with
antiferromagnetic insulating manganites sandwiched in between. The results
demonstrate how to control the strength and relative orientation of interfacial
ferromagnetism in correlated electron materials by means of valence state
variation and substrate-induced strain, respectively
Quasiparticle interference on the surface of the topological crystalline insulator Pb_(1−x)Sn_xSe
Topological crystalline insulators represent a novel topological phase of matter in which the surface states are protected by discrete point group symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy is one possible realization of this phase, which undergoes a topological phase transition upon changing the lead content. We used scanning tunneling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) to probe the surface states on (001) Pb_(1−x)Sn_xSe in the topologically nontrivial (x=0.23) and topologically trivial (x=0) phases. We observed quasiparticle interference with STM on the surface of the topological crystalline insulator and demonstrated that the measured interference can be understood from ARPES studies and a simple band structure model. Furthermore, our findings support the fact that Pb_(0.77)Sn_(0.23)Se and PbSe have different topological nature
Chiral and axial anomalies in the framework of generalized Hamiltonian BFV-quantization
The regularization scheme is proposed for the constrained Hamiltonian
formulation of the gauge fields coupled to the chiral or axial fermions. The
Schwinger terms in the regularized operator first-class constraint algebra are
shown to be consistent with the covariant divergence anomaly of the
corresponding current. Regularized quantum master equations are studied, and
the Schwinger terms are found out to break down both nilpotency of the
BRST-charge and its conservation law. Wess-Zumino consistency conditions are
studied for the BRST anomaly and they are shown to contradict to the covariant
Schwinger terms in the BRST algebra.Comment: LaTeX, 24p
- …