19,964 research outputs found
Bounces/Dyons in the Plane Wave Matrix Model and SU(N) Yang-Mills Theory
We consider SU(N) Yang-Mills theory on the space R^1\times S^3 with Minkowski
signature (-+++). The condition of SO(4)-invariance imposed on gauge fields
yields a bosonic matrix model which is a consistent truncation of the plane
wave matrix model. For matrices parametrized by a scalar \phi, the Yang-Mills
equations are reduced to the equation of a particle moving in the double-well
potential. The classical solution is a bounce, i.e. a particle which begins at
the saddle point \phi=0 of the potential, bounces off the potential wall and
returns to \phi=0. The gauge field tensor components parametrized by \phi are
smooth and for finite time both electric and magnetic fields are nonvanishing.
The energy density of this non-Abelian dyon configuration does not depend on
coordinates of R^1\times S^3 and the total energy is proportional to the
inverse radius of S^3. We also describe similar bounce dyon solutions in SU(N)
Yang-Mills theory on the space R^1\times S^2 with signature (-++). Their energy
is proportional to the square of the inverse radius of S^2. From the viewpoint
of Yang-Mills theory on R^{1,1}\times S^2 these solutions describe non-Abelian
(dyonic) flux tubes extended along the x^3-axis.Comment: 11 pages; v2: one formula added, some coefficients correcte
Skolem-type difference sets for cycle systems
Cyclic m-cycle systems of order v are constructed for all m greater than or equal to 3, and all v = 1(mod 2m). This result has been settled previously by several authors. In this paper, we provide a different solution, as a consequence of a more general result, which handles all cases using similar methods and which also allows us to prove necessary and sufficient conditions for the existence of a cyclic m-cycle system of K-v - F for all m greater than or equal to 3, and all v = 2(mod 2m)
Quantum contextuality for a relativistic spin-1/2 particle
The quantum predictions for a single nonrelativistic spin-1/2 particle can be
reproduced by noncontextual hidden variables. Here we show that quantum
contextuality for a relativistic electron moving in a Coulomb potential
naturally emerges if relativistic effects are taken into account. The
contextuality can be identified through the violation of noncontextuality
inequalities. We also discuss quantum contextuality for the free Dirac electron
as well as the relativistic Dirac oscillator.Comment: REVTeX4, 5 page
Striped Magnetic Ground State of the Kagome Lattice in Fe4Si2Sn7O16
We have experimentally identified a new magnetic ground state for the kagome
lattice, in the perfectly hexagonal Fe2+ (3d6, S = 2) compound Fe4Si2Sn7O16.
Representational symmetry analysis of neutron diffraction data shows that below
T_N = 3.5 K, the spins on 2/3 of the magnetic ions order into canted
antiferromagnetic chains, separated by the remaining 1/3 which are
geometrically frustrated and show no long-range order down to at least T = 0.1
K. Moessbauer spectroscopy confirms that there is no static order on the latter
1/3 of the magnetic ions - i.e., they are in a liquid-like rather than a frozen
state - down to at least 1.65 K. A heavily Mn-doped sample
Fe1.45Mn2.55Si2Sn7O16 has the same magnetic structure. Although the propagation
vector q = (0, 1/2 , 1/2 ) breaks hexagonal symmetry, we see no evidence for
magnetostriction in the form of a lattice distortion within the resolution of
our data. We discuss the relationship to partially frustrated magnetic order on
the pyrochlore lattice of Gd2Ti2O7, and to theoretical models that predict
symmetry breaking ground states for perfect kagome lattices.Comment: 5 pages, 5 figure
Highly homogeneous nitrogen doped titania nanomaterials: Synthesis and characterization
A series of nitrogen doped titania nanomaterials were synthesized via sol-gel method by using tetraethyl ammonium hydroxide as N source. Doping of N into TiO2 was confirmed via X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR) analyses. Mixture of anatase and rutile phases appeared in the unmodified TiO2 which was calcined at 773 K. The addition of N to TiO2 matrix led to formation of single phase of anatase. It has been demonstrated that TiO2 and all the N-doped TiO2 materials were in nanoscale ranging 15.91 – 20.82 nm. Change in surface morphology after N doping was detected by field emission scanning electron microscope (FESEM). Results of EDX mapping analysis indicated homogeneous distribution of N dopants
Quantum nonlocality of Heisenberg XX model with Site-dependent Coupling Strength
We show that the generalized Bell inequality is violated in the extended
Heisenberg model when the temperature is below a threshold value. The threshold
temperature values are obtained by constructing exact solutions of the model
using the temperature-dependent correlation functions. The effect due to the
presence of external magnetic field is also illustrated.Comment: 10 pages and 2 figures, published versio
Magnetic and orbital order in overdoped bilayer manganites
The magnetic and orbital orders for the bilayer manganites in the doping
region have been investigated from a model that incorporates the
two orbitals at each Mn site, the inter-orbital Coulomb interaction and
lattice distortions. The usual double exchange operates via the orbitals.
It is shown that such a model reproduces much of the phase diagram recently
obtained for the bilayer systems in this range of doping. The C-type phase with
() spin order seen by Ling et al. appears as a natural consequence
of the layered geometry and is stabilised by the static distortions of the
system. The orbital order is shown to drive the magnetic order while the
anisotropic hopping across the orbitals, layered nature of the underlying
structure and associated static distortions largely determine the orbital
arrangements.Comment: 8 pages, 5 figure
Multi-Component Bell Inequality and its Violation for Continuous Variable Systems
Multi-component correlation functions are developed by utilizing d-outcome
measurements. Based on the multi-component correlation functions, we propose a
Bell inequality for bipartite d-dimensional systems. Violation of the Bell
inequality for continuous variable (CV) systems is investigated. The violation
of the original Einstein-Podolsky-Rosen state can exceed the Cirel'son bound,
the maximal violation is 2.96981. For finite value of squeezing parameter,
violation strength of CV states increases with dimension d. Numerical results
show that the violation strength of CV states with finite squeezing parameter
is stronger than that of original EPR state.Comment: 5 pages and 1 figure, rewritten version, accepted by Phys. Rev.
Gamma-Ray Spectra & Variability of the Crab Nebula Emission Observed by BATSE
We report ~ 600 days of BATSE earth-occultation observations of the total
gamma-ray (30 keV to 1.7 MeV) emission from the Crab nebula, between 1991 May
24 (TJD 8400) and 1994 October 2 (TJD 9627). Lightcurves from 35-100, 100-200,
200-300, 300-400, 400-700, and 700-1000 keV, show that positive fluxes were
detected by BATSE in each of these six energy bands at significances of
approximately 31, 20, 9.2, 4.5, 2.6, and 1.3 sigma respectively per day. We
also observed significant flux and spectral variations in the 35-300 keV energy
region, with time scales of days to weeks. The spectra below 300 keV, averaged
over typical CGRO viewing periods of 6-13 days, can be well described by a
broken power law with average indices of ~ 2.1 and ~ 2.4 varying around a
spectral break at ~ 100 keV. Above 300 keV, the long-term averaged spectra,
averaged over three 400 d periods (TJD 8400-8800, 8800-9200, and 9200-9628,
respectively) are well represented by the same power law with index of ~ 2.34
up to ~ 670 keV, plus a hard spectral component extending from ~ 670 keV to ~
1.7 MeV, with a spectral index of ~ 1.75. The latter component could be related
to a complex structure observed by COMPTEL in the 0.7-3 MeV range. Above 3 MeV,
the extrapolation of the power-law continuum determined by the low-energy BATSE
spectrum is consistent with fluxes measured by COMPTEL in the 3-25 MeV range,
and by EGRET from 30-50 MeV. We interpret these results as synchrotron emission
produced by the interaction of particles ejected from the pulsar with the field
in different dynamical regions of the nebula system, as observed recently by
HST, XMM-Newton, and Chandra.Comment: To be published in the November 20, 2003, Vol 598 issue of the
Astrophysical Journa
Gisin's Theorem for Three Qubits
We present a Theorem that all generalized Greenberger-Horne-Zeilinger states
of a three-qubit system violate a Bell inequality in terms of probabilities.
All pure entangled states of a three-qubit system are shown to violate a Bell
inequality for probabilities; thus, one has Gisin's theorem for three qubits.Comment: 5 pages, 2 figures. v2: journal-ref is added and some corrections are
mad
- …