2,921 research outputs found

    Non-Markovian disentanglement dynamics of two-qubit system

    Full text link
    We investigated the disentanglement dynamics of two-qubit system in Non-Markovian approach. We showed that only the couple strength with the environment near to or less than fine-structure constant 1/137, entanglement appear exponential decay for a certain class of two-qubit entangled state. While the coupling between qubit and the environment is much larger, system always appears the sudden-death of entanglement even in the vacuum environment.Comment: 17 pages, 3 figure

    Non-Markovian coherence dynamics of driven spin boson model: damped quantum beat or large amplitude coherence oscillation

    Full text link
    The dynamics of driven spin boson model is studied analytically by means of the perturbation approach based on a unitary transformation. We gave the analytical expression for the population difference and coherence of the two level system. The results show that in the weak driven case, the population difference present damped coherent oscillation (single or double frequency) and the frequencies depend on the initial state. The coherence exhibit damped oscillation with Rabi frequency. When driven field is strong enough, the population difference exhibit undamped large-amplitude coherent oscillation. The results easily return to the two extreme cases without dissipation or without periodic driven.Comment: 15 pages,5 figure

    Electric-field control of magnetic ordering in the tetragonal BiFeO3

    Full text link
    We propose a way to use electric-field to control the magnetic ordering of the tetragonal BiFeO3. Based on systematic first-principles studies of the epitaxial strain effect on the ferroelectric and magnetic properties of the tetragonal BiFeO3, we find that there exists a transition from C-type to G-type antiferromagnetic (AFM) phase at in-plane constant a ~ 3.905 {\AA} when the ferroelectric polarization is along [001] direction. Such magnetic phase transition can be explained by the competition between the Heisenberg exchange constant J1c and J2c under the influence of biaxial strain. Interestingly, when the in-plane lattice constant enlarges, the preferred ferroelectric polarization tends to be canted and eventually lies in the plane (along [110] direction). It is found that the orientation change of ferroelectric polarization, which can be realized by applying external electric-field, has significant impact on the Heisenberg exchange parameters and therefore the magnetic orderings of tetragonal BiFeO3. For example, at a ~ 3.79 {\AA}, an electric field along [111] direction with magnitude of 2 MV/cm could change the magnetic ordering from C-AFM to G-AFM. As the magnetic ordering affects many physical properties of the magnetic material, e.g. magnetoresistance, we expect such strategy would provide a new avenue to the application of multiferroic materials.Comment: 4 pages, 4 figure

    On the performance of two protocols: SARG04 and BB84

    Full text link
    We compare the performance of BB84 and SARG04, the later of which was proposed by V. Scarani et al., in Phys. Rev. Lett. 92, 057901 (2004). Specifically, in this paper, we investigate SARG04 with two-way classical communications and SARG04 with decoy states. In the first part of the paper, we show that SARG04 with two-way communications can tolerate a higher bit error rate (19.4% for a one-photon source and 6.56% for a two-photon source) than SARG04 with one-way communications (10.95% for a one-photon source and 2.71% for a two-photon source). Also, the upper bounds on the bit error rate for SARG04 with two-way communications are computed in a closed form by considering an individual attack based on a general measurement. In the second part of the paper, we propose employing the idea of decoy states in SARG04 to obtain unconditional security even when realistic devices are used. We compare the performance of SARG04 with decoy states and BB84 with decoy states. We find that the optimal mean-photon number for SARG04 is higher than that of BB84 when the bit error rate is small. Also, we observe that SARG04 does not achieve a longer secure distance and a higher key generation rate than BB84, assuming a typical experimental parameter set.Comment: 48 pages, 10 figures, 1 column, changed Figs. 7 and

    Effects of Zeeman spin splitting on the modular symmetry in the quantum Hall effect

    Full text link
    Magnetic-field-induced phase transitions in the integer quantum Hall effect are studied under the formation of paired Landau bands arising from Zeeman spin splitting. By investigating features of modular symmetry, we showed that modifications to the particle-hole transformation should be considered under the coupling between the paired Landau bands. Our study indicates that such a transformation should be modified either when the Zeeman gap is much smaller than the cyclotron gap, or when these two gaps are comparable.Comment: 8 pages, 4 figure

    Security proof of a three-state quantum key distribution protocol without rotational symmetry

    Get PDF
    Standard security proofs of quantum key distribution (QKD) protocols often rely on symmetry arguments. In this paper, we prove the security of a three-state protocol that does not possess rotational symmetry. The three-state QKD protocol we consider involves three qubit states, where the first two states, |0_z> and |1_z>, can contribute to key generation and the third state, |+>=(|0_z>+|1_z>)/\sqrt{2}, is for channel estimation. This protocol has been proposed and implemented experimentally in some frequency-based QKD systems where the three states can be prepared easily. Thus, by founding on the security of this three-state protocol, we prove that these QKD schemes are, in fact, unconditionally secure against any attacks allowed by quantum mechanics. The main task in our proof is to upper bound the phase error rate of the qubits given the bit error rates observed. Unconditional security can then be proved not only for the ideal case of a single-photon source and perfect detectors, but also for the realistic case of a phase-randomized weak coherent light source and imperfect threshold detectors. Our result on the phase error rate upper bound is independent of the loss in the channel. Also, we compare the three-state protocol with the BB84 protocol. For the single-photon source case, our result proves that the BB84 protocol strictly tolerates a higher quantum bit error rate than the three-state protocol; while for the coherent-source case, the BB84 protocol achieves a higher key generation rate and secure distance than the three-state protocol when a decoy-state method is used.Comment: 10 pages, 3 figures, 2 column

    An experimental study on Γ\Gamma(2) modular symmetry in the quantum Hall system with a small spin-splitting

    Full text link
    Magnetic-field-induced phase transitions were studied with a two-dimensional electron AlGaAs/GaAs system. The temperature-driven flow diagram shows the features of the Γ\Gamma(2) modular symmetry, which includes distorted flowlines and shiftted critical point. The deviation of the critical conductivities is attributed to a small but resolved spin splitting, which reduces the symmetry in Landau quantization. [B. P. Dolan, Phys. Rev. B 62, 10278.] Universal scaling is found under the reduction of the modular symmetry. It is also shown that the Hall conductivity could still be governed by the scaling law when the semicircle law and the scaling on the longitudinal conductivity are invalid. *corresponding author:[email protected]: The revised manuscript has been published in J. Phys.: Condens. Matte

    Chiral Quantum Walks

    Get PDF
    Given its importance to many other areas of physics, from condensed matter physics to thermodynamics, time-reversal symmetry has had relatively little influence on quantum information science. Here we develop a network-based picture of time-reversal theory, classifying Hamiltonians and quantum circuits as time-symmetric or not in terms of the elements and geometries of their underlying networks. Many of the typical circuits of quantum information science are found to exhibit time-asymmetry. Moreover, we show that time-asymmetry in circuits can be controlled using local gates only, and can simulate time-asymmetry in Hamiltonian evolution. We experimentally implement a fundamental example in which controlled time-reversal asymmetry in a palindromic quantum circuit leads to near-perfect transport. Our results pave the way for using time-symmetry breaking to control coherent transport, and imply that time-asymmetry represents an omnipresent yet poorly understood effect in quantum information science.Comment: 9 pages, 4 figures, REVTeX 4.1 - published versio

    Phase-Remapping Attack in Practical Quantum Key Distribution Systems

    Full text link
    Quantum key distribution (QKD) can be used to generate secret keys between two distant parties. Even though QKD has been proven unconditionally secure against eavesdroppers with unlimited computation power, practical implementations of QKD may contain loopholes that may lead to the generated secret keys being compromised. In this paper, we propose a phase-remapping attack targeting two practical bidirectional QKD systems (the "plug & play" system and the Sagnac system). We showed that if the users of the systems are unaware of our attack, the final key shared between them can be compromised in some situations. Specifically, we showed that, in the case of the Bennett-Brassard 1984 (BB84) protocol with ideal single-photon sources, when the quantum bit error rate (QBER) is between 14.6% and 20%, our attack renders the final key insecure, whereas the same range of QBER values has been proved secure if the two users are unaware of our attack; also, we demonstrated three situations with realistic devices where positive key rates are obtained without the consideration of Trojan horse attacks but in fact no key can be distilled. We remark that our attack is feasible with only current technology. Therefore, it is very important to be aware of our attack in order to ensure absolute security. In finding our attack, we minimize the QBER over individual measurements described by a general POVM, which has some similarity with the standard quantum state discrimination problem.Comment: 13 pages, 8 figure
    • …
    corecore