83,371 research outputs found
Effects of disorder on quantum fluctuations and superfluid density of a Bose-Einstein condensate in a two-dimensional optical lattice
We investigate a Bose-Einstein condensate trapped in a 2D optical lattice in
the presence of weak disorder within the framework of the Bogoliubov theory. In
particular, we analyze the combined effects of disorder and an optical lattice
on quantum fluctuations and superfluid density of the BEC system. Accordingly,
the analytical expressions of the ground state energy and quantum depletion of
the system are obtained. Our results show that the lattice still induces a
characteristic 3D to 1D crossover in the behavior of quantum fluctuations,
despite the presence of weak disorder. Furthermore, we use the linear response
theory to calculate the normal fluid density of the condensate induced by
disorder. Our results in the 3D regime show that the combined presence of
disorder and lattice induce a normal fluid density that asymptotically
approaches 4/3 of the corresponding condensate depletion. Conditions for
possible experimental realization of our scenario are also proposed.Comment: 8 pages, 0 figure. To appear in Physical Review
Spin Qubits in Multi-Electron Quantum Dots
We study the effect of mesoscopic fluctuations on the magnitude of errors
that can occur in exchange operations on quantum dot spin-qubits. Mid-size
double quantum dots, with an odd number of electrons in the range of a few tens
in each dot, are investigated through the constant interaction model using
realistic parameters. It is found that the constraint of having short pulses
and small errors implies keeping accurate control, at the few percent level, of
several electrode voltages. In practice, the number of independent parameters
per dot that one should tune depends on the configuration and ranges from one
to four.Comment: RevTex, 6 pages, 5 figures. v3: two figures added, more details
provided. Accepted for publication in PR
Analytical Solution of Electron Spin Decoherence Through Hyperfine Interaction in a Quantum Dot
We analytically solve the {\it Non-Markovian} single electron spin dynamics
due to hyperfine interaction with surrounding nuclei in a quantum dot. We use
the equation-of-motion method assisted with a large field expansion, and find
that virtual nuclear spin flip-flops mediated by the electron contribute
significantly to a complete decoherence of transverse electron spin correlation
function. Our results show that a 90% nuclear polarization can enhance the
electron spin time by almost two orders of magnitude. In the long time
limit, the electron spin correlation function has a non-exponential
decay in the presence of both polarized and unpolarized nuclei.Comment: 4 pages, 3 figure
M-atom conductance oscillations of a metallic quantum wire
The electron transport through a monoatomic metallic wire connected to leads
is investigated using the tight-binding Hamiltonian and Green's function
technique. Analytical formulas for the transmittance are derived and M-atom
oscillations of the conductance versus the length of the wire are found. Maxima
of the transmittance function versus the energy, for the wire consisted of N
atoms, determine the (N+1) period of the conductance. The periods of
conductance oscillations are discussed and the local and average quantum wire
charges are presented. The average charge of the wire is linked with the period
of the conductance oscillations and it tends to the constant value as the
length of the wire increases. For M-atom periodicity there are possible (M-1)
average occupations of the wire states.Comment: 8 pages, 5 figures. J.Phys.: Condens. matter (2005) accepte
Cosmological Perturbations from a Group Theoretical Point of View
We present a new approach to cosmological perturbations based on the theory
of Lie groups and their representations. After re-deriving the standard
covariant formalism from SO(3) considerations, we provide a new expansion of
the perturbed Friedmann-Lemaitre-Robertson-Walker (FLRW) metric in terms of
irreducible representations of the Lorentz group. The resulting decomposition
splits into (scalar, scalar), (scalar, vector) and (vector, vector) terms.
These equations directly correspond to the standard Lifshitz classification of
cosmological perturbations using scalar, vector and tensor modes which arise
from the irreducible SO(3) representation of the spatial part of the metric.
While the Lorentz group basis matches the underlying local symmetries of the
FLRW spacetime better than the SO(3), the new equations do not provide further
simplification compared to the standard cosmological perturbation theory. We
conjecture that this is due to the fact that the so(3,1) ~ su(2) x su(2)
Lorentz algebra has no pair of commuting generators commuting with any of the
translation group generators.Comment: To be published in Classical and Quantum Gravit
A Survey on Multisensor Fusion and Consensus Filtering for Sensor Networks
Multisensor fusion and consensus filtering are two fascinating subjects in the research of sensor networks. In this survey, we will cover both classic results and recent advances developed in these two topics. First, we recall some important results in the development ofmultisensor fusion technology. Particularly, we pay great attention to the fusion with unknown correlations, which ubiquitously exist in most of distributed filtering problems. Next, we give a systematic review on several widely used consensus filtering approaches. Furthermore, some latest progress on multisensor fusion and consensus filtering is also presented. Finally,
conclusions are drawn and several potential future research directions are outlined.the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61374039, 61304010, 11301118, and 61573246, the Hujiang Foundation of China under Grants C14002
and D15009, the Alexander von Humboldt Foundation of Germany, and the Innovation Fund Project for Graduate Student of Shanghai under Grant JWCXSL140
- …