12,826 research outputs found
Global axisymmetric stability analysis for a composite system of two gravitationally coupled scale-free discs
In a composite system of gravitationally coupled stellar and gaseous discs,
we perform linear stability analysis for axisymmetric coplanar perturbations
using the two-fluid formalism. The background stellar and gaseous discs are
taken to be scale-free with all physical variables varying as powers of
cylindrical radius with compatible exponents. The unstable modes set in as
neutral modes or stationary perturbation configurations with angular frequency
.Comment: 7 pages using AAS styl
Coupled KdV equations derived from atmospherical dynamics
Some types of coupled Korteweg de-Vries (KdV) equations are derived from an
atmospheric dynamical system. In the derivation procedure, an unreasonable
-average trick (which is usually adopted in literature) is removed. The
derived models are classified via Painlev\'e test. Three types of
-function solutions and multiple soliton solutions of the models are
explicitly given by means of the exact solutions of the usual KdV equation. It
is also interesting that for a non-Painlev\'e integrable coupled KdV system
there may be multiple soliton solutions.Comment: 19 pages, 2 figure
Optical and electrical spin injection and spin transport in hybrid Fe/GaAs devices
We discuss methods for imaging the nonequilibrium spin polarization of
electrons in Fe/GaAs spin transport devices. Both optically- and
electrically-injected spin distributions are studied by scanning
magneto-optical Kerr rotation microscopy. Related methods are used to
demonstrate electrical spin detection of optically-injected spin polarized
currents. Dynamical properties of spin transport are inferred from studies
based on the Hanle effect, and the influence of strain on spin transport data
in these devices is discussed.Comment: 5 pages, 6 figs. ICPS-28 proceedings (July'06, Vienna) for J. Appl.
Phy
Spin injection from perpendicular magnetized ferromagnetic -MnGa into (Al,Ga)As heterostructures
Electrical spin injection from ferromagnetic -MnGa into an (Al,Ga)As
p-i-n light emitting diode (LED) is demonstrated. The -MnGa layers show
strong perpendicular magnetocrystalline anisotropy, enabling detection of spin
injection at remanence without an applied magnetic field. The bias and
temperature dependence of the spin injection are found to be qualitatively
similar to Fe-based spin LED devices. A Hanle effect is observed and
demonstrates complete depolarization of spins in the semiconductor in a
transverse magnetic field.Comment: 4 pages, 3 figure
Variational ground states of 2D antiferromagnets in the valence bond basis
We study a variational wave function for the ground state of the
two-dimensional S=1/2 Heisenberg antiferromagnet in the valence bond basis. The
expansion coefficients are products of amplitudes h(x,y) for valence bonds
connecting spins separated by (x,y) lattice spacings. In contrast to previous
studies, in which a functional form for h(x,y) was assumed, we here optimize
all the amplitudes for lattices with up to 32*32 spins. We use two different
schemes for optimizing the amplitudes; a Newton/conjugate-gradient method and a
stochastic method which requires only the signs of the first derivatives of the
energy. The latter method performs significantly better. The energy for large
systems deviates by only approx. 0.06% from its exact value (calculated using
unbiased quantum Monte Carlo simulations). The spin correlations are also well
reproduced, falling approx. 2% below the exact ones at long distances. The
amplitudes h(r) for valence bonds of long length r decay as 1/r^3. We also
discuss some results for small frustrated lattices.Comment: v2: 8 pages, 5 figures, significantly expanded, new optimization
method, improved result
New variable separation approach: application to nonlinear diffusion equations
The concept of the derivative-dependent functional separable solution, as a
generalization to the functional separable solution, is proposed. As an
application, it is used to discuss the generalized nonlinear diffusion
equations based on the generalized conditional symmetry approach. As a
consequence, a complete list of canonical forms for such equations which admit
the derivative-dependent functional separable solutions is obtained and some
exact solutions to the resulting equations are described.Comment: 19 pages, 2 fig
model and Higgs mass in standard model calculated by Gaussian effective potential approach with a new regularization-renormalization method
Basing on new regularization-renormalization method, the
model used in standard model is studied both perturbatively and
nonperturbatively (by Gaussian effective potential). The invariant property of
two mass scales is stressed and the existence of a (Landau) pole is emphasized.
Then after coupling with the SU(2)U(1) gauge fields, the Higgs mass in
standard model (SM) can be calculated as 138GeV. The critical
temperature () for restoration of symmetry of Higgs field, the critical
energy scale (, the maximum energy scale under which the lower
excitation sector of the GEP is valid) and the maximum energy scale
(, at which the symmetry of the Higgs field is restored) in the
standard model are 476 GeV, GeV
and GeVv respectively.Comment: 12 pages, LaTex, no figur
- …