617 research outputs found

    Phase separation from electron confinement at oxide interfaces

    Full text link
    Oxide heterostructures are of great interest both for fundamental and applicative reasons. In particular the two-dimensional electron gas at the LaAlO3_3/SrTiO3_3 or LaTiO3_3/SrTiO3_3 interfaces displays many different physical properties and functionalities. However there are clear indications that the interface electronic state is strongly inhomogeneous and therefore it is crucially relevant to investigate possible intrinsic electronic mechanisms underlying this inhomogeneity. Here the electrostatic potential confining the electron gas at the interface is calculated self-consistently, finding that the electron confinement at the interface may induce phase separation, to avoid a thermodynamically unstable state with a negative compressibility. This provides a generic robust and intrinsic mechanism for the experimentally observed inhomogeneous character of these interfaces.Comment: 8 pages and 4 figure

    Le reboisement au Sénégal : bilan des réalisations de 1993 à 1998

    Get PDF
    La production de plants au Sénégal, toutes espèces confondues, a régressé de 46% entre 1993 et 1998 et reste dominée par les espèces forestières (77% des productions). Les espèces exotiques à croissance rapide sont les plus demandées par les populations locales. Durant cette période, le taux annuel de reboisement est évalué à 13 679 ha. Ce taux est nettement inférieur au taux de déboisement estimé à 50 000 ha/an. Les plantations massives représentent l'essentiel des réalisations de ces dernières années et concernent essentiellement les plantations villageoises et communautaires. L'effort national de reboisement est en baisse constante et les superficies plantées ont diminué de 38%. Cette situation est en grande partie liée à la récession économique et à la régression de près de 60% des réalisations des projets de développement forestier qui assurent plus de 58% des superficies plantées. La situation actuelle du secteur forestier découles de contraintes d'ordre économique, méthodoloqique, technique et institutionnelle qui sont discutées dans cette étude. (Résumé d'auteur

    c-axis Josephson Tunneling in Twinned YBCO Crystals

    Full text link
    Josephson tunneling between YBCO and Pb with the current flowing along the c-axis of the YBCO is persumed to come from an s-wave component of the superconductivity of the YBCO. Experiments on multi-twin samples are not entirely consistent with this hypothesis. The sign change of the s-wave order parameter across the N_T twin boundaries should give cancelations, resulting in a small (N)(\sqrt{N}) tunneling current. The actual current is larger than this. We present a theory of this unexpectedly large current based upon a surface effect: disorder-induced supression of the d-wave component at the (001) surface leads to s-wave coherence across the twin boundaries and a non-random tunneling current. We solve the case of an ordered array of d+s and d-s twins, and estimate that the twin size at which s-wave surface coherence occurs is consistent with typical sizes observed in experiments. In this picture, there is a phase difference of π/2\pi/2 between different surfaces of the material. We propose a corner junction experiment to test this picture.Comment: 5 pages, 4 eps figure

    Inhomogeneous multi-carrier superconductivity at LaXO3/SrTiO3 (X=Al or Ti) oxide interfaces

    Full text link
    Several experiments reveal the inhomogeneous character of the superconducting state that occurs when the carrier density of the two-dimensional electron gas formed at the LaXO3/SrTiO3 (X=Al or Ti) interface is tuned above a threshold value by means of gating. Re-analyzing previous measurements, that highlight the presence of two kinds of carriers, with low and high mobility, we shall provide a description of multi-carrier magneto-transport in an inhomogeneous two-dimensional electron gas, gaining insight into the properties of the physics of the systems under investigation. We shall then show that the measured resistance, superfluid density, and tunneling spectra result from the percolative connection of superconducting "puddles" with randomly distributed critical temperatures, embedded in a weakly localizing metallic matrix. We shall also show that this scenario is consistent with the characteristics of the superconductor-to-metal transition driven by a magnetic field. A multi-carrier description of the superconducting state, within a weak-coupling BCS-like model, will be finally discussed.Comment: 12 pages 10 figure

    Improving HTc Josephson Junctions (HTc JJ) by annealing: the role of vacancy-interstitial annihilation

    Full text link
    We have studied the annealing effect in transport properties of High temperature Josephson Junctions (HTc JJ) made by ion irradiation. Low temperature annealing (80 degrees Celsius) increases the JJ transition temperature (TJ) and the Ic.Rn product, where Ic is the critical current and Rn the normal resistance. We found that the spread in JJ characteristics can be lowered by sufficient long annealing times. Using random walk numerical simulations, we showed that the characteristic annealing time and the evolution of the spread in JJ characteristics can be explained by a vacancy-interstitial annihilation process rather than by an oxygen diffusion one.Comment: 7 pages and 3 figures submitted to Applied Physics Letter

    Study and optimization of ion-irradiated High-Tc Josephson nanoJunctions by Monte Carlo simulations

    Full text link
    High Tc Josephson nanoJunctions (HTc JnJ) made by ion irradiation have remarkable properties for technological applications. However, the spread in their electrical characteristics increases with the ion dose. We present a simple model to explain the JnJ inhomogeneities, which accounts quantitatively for experimental data. The spread in the slit's width of the irradiation mask is the limiting factor.Monte Carlo simulations have been performed using different irradiation conditions to study their influence on the spread of the JnJ charcateristics. A "universal" behavior has been evidenced, which allows to propose new strategies to optimize JnJ reproducibility.Comment: 14 pages, 6 Figures. accepted in Journal of Applied Physic

    Physical Mechanism of the d->d+is Transition

    Full text link
    We discuss the basic physical mechanism of the d->d+is transition, which is the currently accepted explanation for the results of tunneling experiments into abab planes. Using the first-order perturbation theory, we show that the zero-bias states drive the transition. We present various order-of-magnitude estimates and consistency checks that support this picture.Comment: 7 pages, 2 figure

    Multi-band superconductivity and nanoscale inhomogeneity at oxide interfaces

    Get PDF
    The two-dimensional electron gas at the LaTiO3/SrTiO3 or LaAlO3/SrTiO3 oxide interfaces becomes superconducting when the carrier density is tuned by gating. The measured resistance and superfluid density reveal an inhomogeneous superconductivity resulting from percolation of filamentary structures of superconducting "puddles" with randomly distributed critical temperatures, embedded in a non-superconducting matrix. Following the evidence that superconductivity is related to the appearance of high-mobility carriers, we model intra-puddle superconductivity by a multi-band system within a weak coupling BCS scheme. The microscopic parameters, extracted by fitting the transport data with a percolative model, yield a consistent description of the dependence of the average intra-puddle critical temperature and superfluid density on the carrier density.Comment: 7 pages with 3 figures + supplemental material (4 pages and 5 figures

    Quantized conductance in a one-dimensional ballistic oxide nanodevice

    Full text link
    Electric-field effect control of two-dimensional electron gases (2-DEG) has enabled the exploration of nanoscale electron quantum transport in semiconductors. Beyond these classical materials, transition metal-oxide-based structures have d-electronic states favoring the emergence of novel quantum orders absent in conventional semiconductors. In this context, the LaAlO3/SrTiO3 interface that combines gate-tunable superconductivity and sizeable spin-orbit coupling is emerging as a promising platform to realize topological superconductivity. However, the fabrication of nanodevices in which the electronic properties of this oxide interface can be controlled at the nanoscale by field-effect remains a scientific and technological challenge. Here, we demonstrate the quantization of conductance in a ballistic quantum point contact (QPC), formed by electrostatic confinement of the LaAlO3/SrTiO3 2-DEG with a split-gate. Through finite source-drain voltage, we perform a comprehensive spectroscopic investigation of the 3d energy levels inside the QPC, which can be regarded as a spectrometer able to probe Majorana states in an oxide 2-DEG
    corecore