1,736 research outputs found
The Levantine Basin - crustal structure and origin
The origin of the Levantine Basin in the Southeastern Mediterranean Sea is related to the opening of the Neo-Tethys. The nature of its crust has been debated for decades. Therefore, we conducted a geophysical experiment in the Levantine Basin. We recorded two refraction seismic lines with 19 and 20 ocean bottom hydrophones, respectively, and developed velocity models. Additional seismic reflection data yield structural information about the upper layers in the first few kilometers. The crystalline basement in the Levantine Basin consists of two layers with a P-wave velocity of 6.06.4 km/s in the upper and 6.56.9 km/s in the lower crust. Towards the center of the basin, the Moho depth decreases from 27 to 22 km. Local variations of the velocity gradient can be attributed to previously postulated shear zones like the Pelusium Line, the DamiettaLatakia Line and the BaltimHecateus Line. Both layers of the crystalline crust are continuous and no indication for a transition from continental to oceanic crust is observed. These results are confirmed by gravity data. Comparison with other seismic refraction studies in prolongation of our profiles under Israel and Jordan and in the Mediterranean Sea near Greece and Sardinia reveal similarities between the crust in the Levantine Basin and thinned continental crust, which is found in that region. The presence of thinned continental crust under the Levantine Basin is therefore suggested. A β-factor of 2.33 is estimated. Based on these findings, we conclude that sea-floor spreading in the Eastern Mediterranean Sea only occurred north of the Eratosthenes Seamount, and the oceanic crust was later subducted at the Cyprus Arc
C-axis Josephson Tunneling Between YBCO and Pb: Direct Evidence for Mixed Order Parameter Symmetry in a High-T_c Superconductor
We report a new class of -axis Josephson tunneling experiments in which a
conventional superconductor (Pb) is deposited across a single twin boundary of
a YBa_2Cu_3O_{7-\delta} crystal. We measure the critical current as a function
of magnitude and angle of magnetic field applied in the plane of the junction.
In all samples, we observe a clear experimental signature of an order parameter
phase shift across the twin boundary. These results provide strong evidence for
mixed - and -wave pairing in YBCO, with a reversal in the sign of the
-wave component across the twin boundary.Comment: 4 pages RevTex, 4 postscript figures included, submitted to Phys.
Rev. Let
31P-NMR and muSR Studies of Filled Skutterudite Compound SmFe4P12: Evidence for Heavy Fermion Behavior with Ferromagnetic Ground State
The 31P-NMR (nuclear magnetic resonance) and muSR (muon spin relaxation)
measurements on the filled skutterudite system SmFe4P12 have been carried out.
The temperature T dependence of the 31P-NMR spectra indicates the existence of
the crystalline electric field effect splitting of the Sm3+$ (J = 5/2)
multiplet into a ground state and an excited state of about 70 K. The
spin-lattice relaxation rate 1/T1 shows the typical behavior of the Kondo
system, i.e., 1/T1 is nearly T independent above 30 K, and varies in proportion
to T (the Korringa behavior, 1/T1 \propto T) between 7.5 K and 30 K. The T
dependence deviated from the Korringa behavior below 7 K, which is independent
of T in the applied magnetic field of 1 kOe, and suppressed strongly in higher
fields. The behavior is explained as 1/T1is determined by ferromagnetic
fluctuations of the uncovered Sm3+ magnetic moments by conduction electrons.
The muSR measurements in zero field show the appearance of a static internal
field associated with the ferromagnetic order below 1.6 K.Comment: 6 pages, 9 figures, to be published in J. Phys. Soc. Jpn. 75 (2006
Dynamics of Flux Creep in Underdoped Single Crystals of Y_1-xPr_xBa_2Cu_3O_7-d
Transport as well as magnetic relaxation properties of the mixed state were
studied on strongly underdoped Y_1-xPr_xBa_2Cu_3O_7-d crystals. We observed two
correlated phenomena - a coupling transition and a transition to quantum creep.
The distribution of transport current below the coupling transition is highly
nonuniform, which facilitates quantum creep. We speculate that in the mixed
state below the coupling transition, where dissipation is nonohmic, the current
distribution may be unstable with respect to self-channeling resulting in the
formation of very thin current-carrying layers.Comment: 11 pages, 9 figures, Submitted to Phys. Rev.
Nonlinear Magneto-Optical Response of - and -Wave Superconductors
The nonlinear magneto-optical response of - and -wave superconductors
is discussed. We carry out the symmetry analysis of the nonlinear
magneto-optical susceptibility in the superconducting state. Due to the surface
sensitivity of the nonlinear optical response for systems with bulk inversion
symmetry, we perform a group theoretical classification of the superconducting
order parameter close to a surface. For the first time, the mixing of singlet
and triplet pairing states induced by spin-orbit coupling is systematically
taken into account. We show that the interference of singlet and triplet
pairing states leads to an observable contribution of the nonlinear
magneto-optical Kerr effect. This effect is not only sensitive to the
anisotropy of the gap function but also to the symmetry itself. In view of the
current discussion of the order parameter symmetry of High-T
superconductors, results for a tetragonal system with bulk singlet pairing for
various pairing symmetries are discussed.Comment: 21 pages (REVTeX) with 8 figures (Postscript
Plasma Dynamics
Contains reports on three research projects.United States Atomic Energy Commission (Contract AT(30-1)-1842)United States Air Force, Air Force Cambridge Research Center (Contract AF19(604)-5992)United States Air Force, Air Force Cambridge Research Center (Contract AF19(604)-4551)National Science Foundation (Grant G-9930)Office of Naval Research through Project SQUID, Phase III, under contract with Massachusetts Institute of Technolog
Enhancement of prestack diffraction data and attributes using a traveltime decomposition approach
Diffractions not only carry important information about small-scale subsurface structures, they also possess unique properties, which make them a powerful tool for seismic processing and imaging. Since a point diffractor scatters an incoming wave to all directions, a diffraction event implies better illumination than a reflection, because the rays travel through larger parts of the subsurface. Furthermore, unlike the reflection case, in which the emergence location of the reflected wave depends on the source position, in the case of non-Snell scattering, up-going and down-going raypaths are decoupled. Based on this decoupling, we introduce a diffraction traveltime decomposition principle, which establishes a direct connection between zero-offset and finite-offset diffraction wavefield attributes. By making use of this approach, we are able to enhance diffractions and obtain high-quality diffraction wavefield attributes at arbitrary offsets in the prestack domain solely based on zero-offset processing without any further optimization of attributes. We show the accuracy of the method by fitting diffraction traveltimes, and on simple waveform data. Application to complex synthetic data shows the ability of the proposed approach to enhance diffractions and provide high-quality wavefield attributes even in sparsely illuminated regions such as subsalt areas. The promising results reveal a high potential for improved prestack data enhancement and further applications such as efficient diffraction-based finite-offset tomography
Evidence for a common physical description of non-Fermi-liquid behavior in f-electron systems
The non-Fermi-liquid (NFL) behavior observed in the low temperature specific
heat and magnetic susceptibility of f-electron systems is
analyzed within the context of a recently developed theory based on Griffiths
singularities. Measurements of and in the systems
, , and (M = Pd,
Pt) are found to be consistent with predicted by this model with in the NFL regime.
These results suggest that the NFL properties observed in a wide variety of
f-electron systems can be described within the context of a common physical
picture.Comment: 4 pages, 4 figure
Evidence for an oscillatory signature in atmospheric neutrino oscillation
Muon neutrino disappearance probability as a function of neutrino flight
length L over neutrino energy E was studied. A dip in the L/E distribution was
observed in the data, as predicted from the sinusoidal flavor transition
probability of neutrino oscillation. The observed L/E distribution constrained
nu_mu nu_tau neutrino oscillation parameters; 1.9x10^-3 < Delta m^2 <
3.0x10^-3 eV^2 and \sin^2(2theta) > 0.90 at 90% confidence level.Comment: 5 pages, 5 figures, submitted to PR
- …
