860 research outputs found

    Microphysical variability in southeast Pacific Stratocumulus clouds: synoptic conditions and radiative response

    Get PDF
    Synoptic and satellite-derived cloud property variations for the southeast Pacific stratocumulus region associated with changes in coastal satellite-derived cloud droplet number concentrations (<i>N</i><sub><i>d</i></sub>) are explored. MAX and MIN <i>N</i><sub><i>d</i></sub> composites are defined by the top and bottom terciles of daily area-mean <i>N</i><sub><i>d</i></sub> values over the Arica Bight, the region with the largest mean oceanic <i>N</i><sub><i>d</i></sub>, for the five October months of 2001, 2005, 2006, 2007 and 2008. The ability of the satellite retrievals to capture composite differences is assessed with ship-based data. <i>N</i><sub><i>d</i></sub> and ship-based accumulation mode aerosol concentrations (<i>N</i><sub><i>a</i></sub>) correlate well (<i>r</i> = 0.65), with a best-fit aerosol activation value <span style="border-bottom: 1px solid #000; vertical-align: 50%; font-size: .7em; color: #000;"><i>d</i>ln <i>N</i><sub><i>d</i></sub></span><span style="margin-left: -2.7em; margin-right: 0.5em; vertical-align: -45%; font-size: .7em; color: #000;"><i>d</i>ln <i>N</i><sub><i>a</i></sub></span> of 0.56 for pixels with <i>N</i><sub><i>d</i></sub>>50 cm<sup>−3</sup>. The adiabatically-derived MODIS cloud depths also correlate well with the ship-based cloud depths (<i>r</i>=0.7), though are consistently higher (mean bias of almost 60 m). The MAX-<i>N</i><sub>d</sub> composite is characterized by a weaker subtropical anticyclone and weaker winds both at the surface and the lower free troposphere than the MIN-<i>N</i><sub><i>d</i></sub> composite. The MAX-<i>N</i><sub>d</sub> composite clouds over the Arica Bight are thinner than the MIN-<i>N</i><sub>d</sub> composite clouds, have lower cloud tops, lower near-coastal cloud albedos, and occur below warmer and drier free tropospheres (as deduced from radiosondes and NCEP Reanalysis). CloudSat radar reflectivities indicate little near-coastal precipitation. The co-occurrence of more boundary-layer aerosol/higher <i>N</i><sub><i>d</i></sub> within a more stable atmosphere suggests a boundary layer source for the aerosol, rather than the free troposphere. <br><br> The MAX-<i>N</i><sub><i>d</i></sub> composite cloud thinning extends offshore to 80° W, with lower cloud top heights out to 95° W. At 85° W, the top-of-atmosphere shortwave fluxes are significantly higher (~50%) for the MAX-<i>N</i><sub>d</sub> composite, with thicker, lower clouds and higher cloud fractions than for the MIN-<i>N</i><sub>d</sub> composite. The change in <i>N</i><sub><i>d</i></sub> at this location is small (though positive), suggesting that the MAX-MIN <i>N</i><sub>d</sub> composite differences in radiative properties primarily reflects synoptic changes. Circulation anomalies and a one-point spatial correlation map reveal a weakening of the 850 hPa southerly winds decreases the free tropospheric cold temperature advection. The resulting increase in the static stability along 85° W is highly correlated to the increased cloud fraction, despite accompanying weaker free tropospheric subsidence

    Does precipitation susceptibility vary with increasing cloud thickness in marine stratocumulus?

    Get PDF
    The relationship between precipitation rate and accumulation mode aerosol concentration in marine stratocumulus-topped boundary layers is investigated by applying the precipitation susceptibility metric to aircraft data obtained during the VOCALS Regional Experiment. A new method to calculate the precipitation susceptibility that incorporates non-precipitating clouds is introduced. The mean precipitation rate <i>R</i> over a segment of the data is expressed as the product of a drizzle fraction <i>f</i> and a drizzle intensity <i>I</i> (mean rate for drizzling columns). The susceptibility <i>S</i><sub>x</sub> is then defined as the fractional decrease in precipitation variable <i>x</i> = {<i>R</i>, <i>f</i>, <i>I</i>} per fractional increase in the concentration of aerosols with dry diameter >0.1 μm, with cloud thickness <i>h</i> held fixed. The precipitation susceptibility <i>S</i><sub>R</sub> is calculated using data from both precipitating and non-precipitating cloudy columns to quantify how aerosol concentrations affect the mean precipitation rate of all clouds of a given <i>h</i> range and not just the mean precipitation of clouds that are precipitating. <i>S</i><sub>R</sub> systematically decreases with increasing <i>h</i>, and this is largely because <i>S</i><sub>f</sub> decreases with <i>h</i> while <i>S</i><sub>I</sub> is approximately independent of <i>h</i>. In a general sense, <i>S</i><i>f</i> can be thought of as the effect of aerosols on the probability of precipitation, while <i>S</i><sub>I</sub> can be thought of as the effect of aerosols on the intensity of precipitation. Since thicker clouds are likely to precipitate regardless of ambient aerosol concentration, we expect <i>S</i><sub>f</sub> to decrease with increasing <i>h</i>. The results are broadly insensitive to the choice of horizontal averaging scale. Similar susceptibilities are found for both cloud base and near-surface drizzle rates. The analysis is repeated with cloud liquid water path held fixed instead of cloud thickness. Simple power law relationships relating precipitation rate to aerosol concentration or cloud droplet concentration do not capture this observed behavior

    Observations of Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: First Results from the ORACLES Deployments in 2016 and 2017

    Get PDF
    Southern Africa produces almost a third of the Earths biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and often mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for regional and global climate change predictions.The low-level clouds in the SE Atlantic have limited vertical extent and therefore present favorable conditions for their exploration with remote sensing. On the other hand, the normal coexistence of BB aerosols and Sc clouds in the same scene also presents significant challenges to conventional remote sensing techniques. We describe first results from NASAs airborne ORACLES (ObseRvations of Aerosols Above Clouds and Their IntEractionS) deployments in September 2016 and August 2017. We emphasize the unique role of polarimetric observations by two instruments, the Research Scanning Polarimeter (RSP) and the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), and describe how these instruments help address specific ORACLES science objectives. Initial assessments of polarimetric observation accuracy for key cloud and aerosol properties will be presented, in as far as the preliminary nature of measurements permits

    A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic Boundary Layer Clouds: Entrainment Rate Limitations on Rapid Primary Ice Nucleation Processes

    Get PDF
    Observations of long-lived mixed-phase Arctic boundary layer clouds on 7 May 1998 during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE)Arctic Cloud Experiment (ACE)Surface Heat Budget of the Arctic Ocean (SHEBA) campaign provide a unique opportunity to test understanding of cloud ice formation. Under the microphysically simple conditions observed (apparently negligible ice aggregation, sublimation, and multiplication), the only expected source of new ice crystals is activation of heterogeneous ice nuclei (IN) and the only sink is sedimentation. Large-eddy simulations with size-resolved microphysics are initialized with IN number concentration N(sub IN) measured above cloud top, but details of IN activation behavior are unknown. If activated rapidly (in deposition, condensation, or immersion modes), as commonly assumed, IN are depleted from the well-mixed boundary layer within minutes. Quasi-equilibrium ice number concentration N(sub i) is then limited to a small fraction of overlying N(sub IN) that is determined by the cloud-top entrainment rate w(sub e) divided by the number-weighted ice fall speed at the surface v(sub f). Because w(sub c) 10 cm/s, N(sub i)/N(sub IN)<< 1. Such conditions may be common for this cloud type, which has implications for modeling IN diagnostically, interpreting measurements, and quantifying sensitivity to increasing N(sub IN) (when w(sub e)/v(sub f)< 1, entrainment rate limitations serve to buffer cloud system response). To reproduce observed ice crystal size distributions and cloud radar reflectivities with rapidly consumed IN in this case, the measured above-cloud N(sub IN) must be multiplied by approximately 30. However, results are sensitive to assumed ice crystal properties not constrained by measurements. In addition, simulations do not reproduce the pronounced mesoscale heterogeneity in radar reflectivity that is observed

    Cloud System Evolution in the Trades (CSET): Following the Evolution of Boundary Layer Cloud Systems with the NSFNCAR GV

    Get PDF
    The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the North Pacific trade winds. The study centered on seven round trips of the National Science FoundationNational Center for Atmospheric Research (NSFNCAR) Gulfstream V (GV) between Sacramento, California, and Kona, Hawaii, between 7 July and 9 August 2015. The CSET observing strategy was to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later. Global Forecast System forecast trajectories were used to plan the outbound flight to Hawaii with updated forecast trajectories setting the return flight plan two days later. Two key elements of the CSET observing system were the newly developed High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Cloud Radar (HCR) and the high-spectral-resolution lidar (HSRL). Together they provided unprecedented characterizations of aerosol, cloud, and precipitation structures that were combined with in situ measurements of aerosol, cloud, precipitation, and turbulence properties. The cloud systems sampled included solid stratocumulus infused with smoke from Canadian wildfires, mesoscale cloudprecipitation complexes, and patches of shallow cumuli in very clean environments. Ultraclean layers observed frequently near the top of the boundary layer were often associated with shallow, optically thin, layered veil clouds. The extensive aerosol, cloud, drizzle, and boundary layer sampling made over open areas of the northeast Pacific along 2-day trajectories during CSET will be an invaluable resource for modeling studies of boundary layer cloud system evolution and its governing physical processes
    corecore