84,175 research outputs found

    Hidden spin current in doped Mott antiferromagnets

    Full text link
    We investigate the nature of doped Mott insulators using exact diagonalization and density matrix renormalization group methods. Persistent spin currents are revealed in the ground state, which are concomitant with a nonzero total momentum or angular momentum associated with the doped hole. The latter determines a nontrivial ground state degeneracy. By further making superpositions of the degenerate ground states with zero or unidirectional spin currents, we show that different patterns of spatial charge and spin modulations will emerge. Such anomaly persists for the odd numbers of holes, but the spin current, ground state degeneracy, and charge/spin modulations completely disappear for even numbers of holes, with the two-hole ground state exhibiting a d-wave symmetry. An understanding of the spin current due to a many-body Berry-like phase and its impact on the momentum distribution of the doped holes will be discussed.Comment: 9 pages, 9 figures, update second version including more data and discussion adde

    Pairing versus phase coherence of doped holes in distinct quantum spin backgrounds

    Full text link
    We examine the pairing structure of holes injected into two \emph{distinct} spin backgrounds: a short-range antiferromagnetic phase versus a symmetry protected topological phase. Based on density matrix renormalization group (DMRG) simulation, we find that although there is a strong binding between two holes in both phases, \emph{phase fluctuations} can significantly influence the pair-pair correlation depending on the spin-spin correlation in the background. Here the phase fluctuation is identified as an intrinsic string operator nonlocally controlled by the spins. We show that while the pairing amplitude is generally large, the coherent Cooper pairing can be substantially weakened by the phase fluctuation in the symmetry-protected topological phase, in contrast to the short-range antiferromagnetic phase. It provides an example of a non-BCS mechanism for pairing, in which the paring phase coherence is determined by the underlying spin state self-consistently, bearing an interesting resemblance to the pseudogap physics in the cuprate.Comment: 9 pages, 6 figure

    Intrinsic translational symmetry breaking in a doped Mott insulator

    Get PDF
    A central issue of Mott physics, with symmetries being fully retained in the spin background, concerns the charge excitation. In a two-leg spin ladder with spin gap, an injected hole can exhibit either a Bloch wave or a density wave by tuning the ladder anisotropy through a `quantum critical point' (QCP). The nature of such a QCP has been a subject of recent studies by density matrix renormalization group (DMRG). In this paper, we reexamine the ground state of the one doped hole, and show that a two-component structure is present in the density wave regime in contrast to the single component in the Bloch wave regime. In the former, the density wave itself is still contributed by a standing-wave-like component characterized by a quasiparticle spectral weight ZZ in a finite-size system. But there is an additional charge incoherent component emerging, which intrinsically breaks the translational symmetry associated with the density wave. The partial momentum is carried away by neutral spin excitations. Such an incoherent part does not manifest in the single-particle spectral function, directly probed by the angle-resolved photoemission spectroscopy (ARPES) measurement, however it is demonstrated in the momentum distribution function. The Landau's one-to-one correspondence hypothesis for a Fermi liquid breaks down here. The microscopic origin of this density wave state as an intrinsic manifestation of the doped Mott physics will be also discussed.Comment: 11 pages, 6 figures, an extended version of arXiv:1601.0065

    Simple unconventional geometric scenario of one-way quantum computation with superconducting qubits inside a cavity

    Full text link
    We propose a simple unconventional geometric scenario to achieve a kind of nontrivial multi-qubit operations with superconducting charge qubits placed in a microwave cavity. The proposed quantum operations are insensitive not only to the thermal state of cavity mode but also to certain random operation errors, and thus may lead to high-fidelity quantum information processing. Executing the designated quantum operations, a class of highly entangled cluster states may be generated efficiently in the present scalable solid-state system, enabling one to achieve one-way quantum computation.Comment: Accepted version with minor amendments. To appear in Phys. Rev.
    • …
    corecore