85 research outputs found

    High-resolution phonocardiogram parameters

    Get PDF
    The article describes the results of studying and analyzing phonocardiograms (PCGs) obtained during a physiological experiment with Blu-ray standard equipment. It provides the findings of a spectral and spectral-time analysis for signals with a sampling frequency of 10, 44.1 and 192 kHz. It shows that the differences in the PCG spectra of identical signals are unreliable. The article specifies the onset and disappearance moments of the harmonic components of heart sounds. It also provides recommendations on the sampling frequency and bit resolution of digitized PCG signals for telemetric systems

    Near-Native Protein Loop Sampling Using Nonparametric Density Estimation Accommodating Sparcity

    Get PDF
    Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM) has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM). Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD <2.0 Å), the DPM-HMM method performs as well or better than the best templates, demonstrating that our automated method recaptures these canonical loops without inclusion of any IgG specific terms or manual intervention. In cases with poor or few good templates (mean RMSD >7.0 Å), this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/~dahl/software/cortorgles/

    Genes and structure of selected cytokines involved in pathogenesis of psoriasis.

    Full text link

    Crystal structure of plant aspartic proteinase prophytepsin: inactivation and vacuolar targeting.

    No full text
    We determined at 2.3 A resolution the crystal structure of prophytepsin, a zymogen of a barley vacuolar aspartic proteinase. In addition to the classical pepsin-like bilobal main body of phytepsin, we also traced most of the propeptide, as well as an independent plant-specific domain, never before described in structural terms. The structure revealed that, in addition to the propeptide, 13 N-terminal residues of the mature phytepsin are essential for inactivation of the enzyme. Comparison of the plant-specific domain with NK-lysin indicates that these two saposin-like structures are closely related, suggesting that all saposins and saposin-like domains share a common topology. Structural analysis of prophytepsin led to the identification of a putative membrane receptor-binding site involved in Golgi-mediated transport to vacuoles
    corecore