275 research outputs found

    Dilaton black holes in grand canonical ensemble near the extreme state

    Get PDF
    Dilaton black holes with a pure electric charge are considered in a framework of a grand canonical ensemble near the extreme state. It is shown that there exists such a subset of boundary data that the Hawking temperature smoothly goes to zero to an infinite value of a horizon radius but the horizon area and entropy are finite and differ from zero. In string theory the existence of a horizon in the extreme limit is due to the finiteness of a system only.Comment: 8 pages, RevTex 3.0. Presentation improved, discussion on metrics in string theory simplified. To be published in Phys.Rev.

    Boulware state and semiclassical thermodynamics of black holes in a cavity

    Full text link
    A black hole, surrounded by a reflecting shell, acts as an effective star-like object with respect to the outer region that leads to vacuum polarization outside, where the quantum fields are in the Boulware state. We find the quantum correction to the Hawking temperature, taking into account this circumstance. It is proportional to the integral of the trace of the total quantum stress-energy tensor over the whole space from the horizon to infinity. For the shell, sufficiently close to the horizon, the leading term comes from the boundary contribution of the Boulware state.Comment: 7 pages. To appear in Phys. Rev.

    Coherent Acceleration of Material Wavepackets

    Get PDF
    We study the quantum dynamics of a material wavepacket bouncing off a modulated atomic mirror in the presence of a gravitational field. We find the occurrence of coherent accelerated dynamics for atoms. The acceleration takes place for certain initial phase space data and within specific windows of modulation strengths. The realization of the proposed acceleration scheme is within the range of present day experimental possibilities.Comment: 6 pages, 3 figures, NASA "Quantum-to-Cosmos" conference proceedings to be published in IJMP

    Two-dimensional quantum-corrected black hole in a finite size cavity

    Full text link
    We consider the gravitation-dilaton theory (not necessarily exactly solvable), whose potentials represent a generic linear combination of an exponential and linear functions of the dilaton. A black hole, arising in such theories, is supposed to be enclosed in a cavity, where it attains thermal equilibrium, whereas outside the cavity the field is in the Boulware state. We calculate quantum corrections to the Hawking temperature THT_{H}, with the contribution from the boundary taken into account. Vacuum polarization outside the shell tend to cool the system. We find that, for the shell to be in the thermal equilibrium, it cannot be placed too close to the horizon. The quantum corrections to the mass due to vacuum polarization vanish in spite of non-zero quantum stresses. We discuss also the canonical boundary conditions and show that accounting for the finiteness of the system plays a crucial role in some theories (e.g., CGHS), where it enables to define the stable canonical ensemble, whereas consideration in an infinite space would predict instability.Comment: 21 pages. In v.2 misprints corrected. To appear in Phys. Rev.

    Quantum-corrected ultraextremal horizons and validity of WKB in massless limit

    Get PDF
    We consider quantum backreaction of the quantized scalar field with an arbitrary mass and curvature coupling on ultraextremal horizons. The problem is distinguished in that (in contrast to non-extremal or extremal black holes) the WKB approximation remains valid near r+r_{+} (which is the radius of the horizon) even in the massless limit. We examine the behavior of the stress-energy tensor of the quantized field near r+r_{+} and show that quantum-corrected objects under discussion do exist. In the limit of the large mass our results agree with previous ones known in literature.Comment: revtex4, 9 page

    Entropy of Quantum Fields for Nonextreme Black Holes in the Extreme Limit

    Get PDF
    Nonextreme black hole in a cavity within the framework of the canonical or grand canonical ensemble can approach the extreme limit with a finite temperature measured on a boundary located at a finite proper distance from the horizon. In spite of this finite temperature, it is shown that the one-loop contribution Sq S_{q\text{ }}of quantum fields to the thermodynamic entropy due to equilibrium Hawking radiation vanishes in the limit under consideration. The same is true for the finite temperature version of the Bertotti-Robinson spacetime into which a classical Reissner-Nordstr\"{o}m black hole turns in the extreme limit. The result Sq=0S_{q}=0 is attributed to the nature of a horizon for the Bertotti-Robinson spacetime.Comment: 11 pages, ReVTeX, no figures. New references added, discussion expanded, presentation and English improved. Accepted for publication in Phys. Rev.

    Modelling by maps of two-frequency microwave ionization of hydrogen atoms

    Get PDF
    Mapping equations of motion of the highly exited classical atom in a monochromatic field are generalized for the two-frequency microwave field. Analysis of the obtained equations indicates to the weak sensitivity of the position of the recently observed ionization peak near the main resonance to the frequency and amplitude of the additional microwave field. In the high frequency region, however, the sensitivity of the enhanced ionization peaks on the additional field frequency is predicted.Comment: LaTex, 3 PostScript figure

    Membrane paradigm and entropy of black holes in the Euclidean action approach

    Full text link
    The membrane paradigm approach to black holes fixes in the vicinity of the event horizon a fictitious surface, the stretched horizon, so that the spacetime outside remains unchanged and the spacetime inside is vacuum. Using this powerful method, several black hole properties have been found and settled, such as the horizon's viscosity, electrical conductivity, resistivity, as well as other properties. On the other hand the Euclidean action approach to black hole spacetimes has been very fruitful in understanding black hole entropy. Combining both the Euclidean action and membrane paradigm approaches a direct derivation of the black hole entropy is given. In the derivation it is considered that the only fields present are the gravitational and matter fields, with no electric field.Comment: 13 page

    Phase transition between quantum and classical regimes for the escape rate of a biaxial spin system

    Full text link
    Employing the method of mapping the spin problem onto a particle one, we have derived the particle Hamiltonian for a biaxial spin system with a transverse or longitudinal magnetic field. Using the Hamiltonian and introducing the parameter p((UmaxE)/(UmaxUmin))p (\equiv (U_{max}-E)/(U_{max}-U_{min})) where UmaxU_{max} (U_{min}) corresponds to the top (bottom) of the potential and EE is the energy of the particle, we have studied the first- or second-order transition around the crossover temperature between thermal and quantum regimes for the escape rate, depending on the anisotropy constant and the external magnetic field. It is shown that the phase boundary separating the first- and second-order transition and its crossover temperature are greatly influenced by the transverse anisotropy constant as well as the transverse or longitudinal magnetic field.Comment: 5 pages + 3 figures, to be published in Phys. Rev.

    Coherent acceleration of material wavepackets in modulated optical fields

    Get PDF
    We study the quantum dynamics of a material wavepacket bouncing off a modulated atomic mirror in the presence of a gravitational field. We find the occurrence of coherent accelerated dynamics for atoms beyond the familiar regime of dynamical localization. The acceleration takes place for certain initial phase space data and within specific windows of modulation strengths. The realization of the proposed acceleration scheme is within the range of present day experimental possibilities
    corecore