3 research outputs found

    First direct evidence of chalcolithic footwear from the near eastern highlands

    Get PDF
    Abstract In 2008, a well preserved and complete shoe was recovered at the base of a Chalcolithic pit in the cave of Areni-1, Armenia. Here, we discuss the chronology of this find, its archaeological context and its relevance to the study of the evolution of footwear. Two leather samples and one grass sample from the shoe were dated at the Oxford Radiocarbon Accelerator Unit (ORAU). A third leather sample was dated at the University of California-Irvine Accelerator Mass Spectrometry Facility (UCIAMS). The R_Combine function for the three leather samples provides a date range of 3627-3377 Cal BC (95.4% confidence interval) and the calibrated range for the straw is contemporaneous (3627-3377 Cal BC). The shoe was stuffed with loose, unfastened grass (Poaceae) without clear orientation which was more than likely used to maintain the shape of the shoe and/or prepare it for storage. The shoe is 24.5 cm long (European size 37), 7.6 to 10 cm wide, and was made from a single piece of leather that wrapped around the foot. It was worn and shaped to the wearer's right foot, particularly around the heel and hallux where the highest pressure is exerted in normal gait. The Chalcolithic shoe provides solid evidence for the use of footwear among Old World populations at least since the Chalcolithic. Other 4 th millennium discoveries of shoes (Italian and Swiss Alps), and sandals (Southern Israel) indicate that more than one type of footwear existed during the 4 th millennium BC, and that we should expect to discover more regional variations in the manufacturing and style of shoes where preservation conditions permit

    The limits and potential of paleogenomic techniques for reconstructing grapevine domestication

    Get PDF
    In ancient DNA (aDNA) research, evolutionary and archaeological questions are often investigated using the genomic sequences of organelles: mitochondrial and chloroplast DNA. Organellar genomes are found in multiple copies per living cell, increasing their chance of recovery from archaeological samples, and are inherited from one parent without genetic recombination, simplifying analyses. While mitochondrial genomes have played a key role in many mammalian aDNA projects, including research focused on prehistoric humans and extinct hominins, it is unclear how useful plant chloroplast genomes (plastomes) may be at elucidating questions related to plant evolution, crop domestication, and the prehistoric movement of botanical products through trade and migration. Such analyses are particularly challenging for plant species whose genomes have highly repetitive sequences and that undergo frequent genomic reorganization, notably species with high retrotransposon activity. To address this question, we explored the research potential of the grape (Vitis vinifera L.) plastome using targeted-enrichment methods and high-throughput DNA sequencing on a collection of archaeological grape pip and vine specimens from sites across Eurasia dating ca. 4000 BCEe1500 CE. We demonstrate that due to unprecedented numbers of sequence insertions into the nuclear and mitochondrial genomes, the grape plastome provides limited intraspecific phylogenetic resolution. Nonetheless, we were able to assign archaeological specimens in the Italian peninsula, Sardinia, UK, and Armenia from pre-Roman to medieval times as belonging to all three major chlorotypes A, C, and D found in modern varieties of Western Europe. Analysis of nuclear genomic DNA from these samples reveals a much greater potential for understanding ancient viticulture, including domestication events, genetic introgression from local wild populations, and the origins and histories of varietal lineages
    corecore