6,726 research outputs found
The hyperon mean free paths in the relativistic mean field
The - and -hyperon mean free paths in nuclei are firstly
calculated in the relativistic mean field (RMF) theory. The real parts of the
optical potential are derived from the RMF approach, while the imaginary parts
are obtained from those of nucleons with the relations:
and . With the
assumption, the depth of the imaginary potential for is
3.5 MeV, and for is 7 MeV at
low incident energy. We find that, the hyperon mean free path decreases with
the increase of the hyperon incident energies, from 200 MeV to 800 MeV; and in
the interior of the nuclei, the mean free path is about fm for
, and about fm for , depending on the hyperon
incident energy.Comment: 5 figures, 6 page
Effect of Wine Closures on the Aroma Properties of Chardonnay Wines after Four Years of Storage
The effects of wine closures on the sensory properties and aroma profiles of fresh Chardonnay wines wereevaluated after four years of bottle storage. Natural cork closure, technical cork closure, Nomacorc light,Nomacorc classic and Nomacorc premium were investigated. Among these wines sealing with differentclosures, the physicochemical parameters of the wine samples showed no significant differences, exceptthat of the free and total sulphur dioxide. Nomacorc light with the highest OTR (oxygen transition rate)had the least residual free sulphur dioxide. Most of volatiles were generally stable, and seven compounds(acetoin, 1-butanol, 2-phenylethanol, 1-pentanol, (Z)-3-hexen-1-ol, 2-nonanol and ethyl decanoate) weresignificantly affected by the wine closures. The sensory analysis revealed that cork closures preserved morefruity/flowery characters of the fresh wines after four years’ storage, as well as cork-tainted off-flavour.Two synthetic closures (Nomacorc light, Nomacorc classic) imparted some grilled attributes to the wines.Nomacorc premium highly reserved the fruity/flowery flavour without cork contamination or oxidisedtoasted characters
Bounded Verification with On-the-Fly Discrepancy Computation
Simulation-based verification algorithms can provide formal safety guarantees
for nonlinear and hybrid systems. The previous algorithms rely on user provided
model annotations called discrepancy function, which are crucial for computing
reachtubes from simulations. In this paper, we eliminate this requirement by
presenting an algorithm for computing piece-wise exponential discrepancy
functions. The algorithm relies on computing local convergence or divergence
rates of trajectories along a simulation using a coarse over-approximation of
the reach set and bounding the maximal eigenvalue of the Jacobian over this
over-approximation. The resulting discrepancy function preserves the soundness
and the relative completeness of the verification algorithm. We also provide a
coordinate transformation method to improve the local estimates for the
convergence or divergence rates in practical examples. We extend the method to
get the input-to-state discrepancy of nonlinear dynamical systems which can be
used for compositional analysis. Our experiments show that the approach is
effective in terms of running time for several benchmark problems, scales
reasonably to larger dimensional systems, and compares favorably with respect
to available tools for nonlinear models.Comment: 24 page
Order in extremal trajectories
Given a chaotic dynamical system and a time interval in which some quantity
takes an unusually large average value, what can we say of the trajectory that
yields this deviation? As an example, we study the trajectories of the
archetypical chaotic system, the baker's map. We show that, out of all
irregular trajectories, a large-deviation requirement selects (isolated) orbits
that are periodic or quasiperiodic. We discuss what the relevance of this
calculation may be for dynamical systems and for glasses
Singularity Free Inhomogeneous Models with Heat Flow
We present a class of singularity free exact cosmological solutions of
Einstein's equations describing a perfect fluid with heat flow. It is obtained
as generalization of the Senovilla class [1] corresponding to incoherent
radiation field. The spacetime is cylindrically symmetric and globally regular.Comment: 6 pages, TeX, to appear in Class.Quant.Gra
Growth of High-Mobility Bi2Te2Se Nanoplatelets on hBN Sheets by van der Waals Epitaxy
The electrical detection of the surface states of topological insulators is
strongly impeded by the interference of bulk conduction, which commonly arises
due to pronounced doping associated with the formation of lattice defects. As
exemplified by the topological insulator Bi2Te2Se, we show that via van der
Waals epitaxial growth on thin hBN substrates the structural quality of such
nanoplatelets can be substantially improved. The surface state carrier mobility
of nanoplatelets on hBN is increased by a factor of about 3 compared to
platelets on conventional Si/SiOx substrates, which enables the observation of
well-developed Shubnikov-de Haas oscillations. We furthermore demonstrate the
possibility to effectively tune the Fermi level position in the films with the
aid of a back gate
- …