36 research outputs found

    Positive Interactions between Desert Granivores: Localized Facilitation of Harvester Ants by Kangaroo Rats

    Get PDF
    Facilitation, when one species enhances the environment or performance of another species, can be highly localized in space. While facilitation in plant communities has been intensely studied, the role of facilitation in shaping animal communities is less well understood. In the Chihuahuan Desert, both kangaroo rats and harvester ants depend on the abundant seeds of annual plants. Kangaroo rats, however, are hypothesized to facilitate harvester ants through soil disturbance and selective seed predation rather than competing with them. I used a spatially explicit approach to examine whether a positive or negative interaction exists between banner-tailed kangaroo rat (Dipodomys spectabilis) mounds and rough harvester ant (Pogonomyrmex rugosus) colonies. The presence of a scale-dependent interaction between mounds and colonies was tested by comparing fitted spatial point process models with and without interspecific effects. Also, the effect of proximity to a mound on colony mortality and spatial patterns of surviving colonies was examined. The spatial pattern of kangaroo rat mounds and harvester ant colonies was consistent with a positive interspecific interaction at small scales (<10 m). Mortality risk of vulnerable, recently founded harvester ant colonies was lower when located close to a kangaroo rat mound and proximity to a mound partly predicted the spatial pattern of surviving colonies. My findings support localized facilitation of harvester ants by kangaroo rats, likely mediated through ecosystem engineering and foraging effects on plant cover and composition. The scale-dependent effect of kangaroo rats on abiotic and biotic factors appears to result in greater founding and survivorship of young colonies near mounds. These results suggest that soil disturbance and foraging by rodents can have subtle impacts on the distribution and demography of other species

    Inclusive fitness theory and eusociality

    Get PDF

    Patriline shifting leads to apparent genetic caste determination in harvester ants

    No full text
    The harvester ant, Pogonomyrmex occidentalis, is characterized by high levels of intracolonial genetic diversity resulting from multiple mating by the queen. Within reproductively mature colonies, the relative frequency of different male genotypes (patrilines) is not stable. The difference between samples increases with time, nearing an asymptote after a year. Patriline distributions in gynes and workers display similar patterns of change. A consequence of changing patriline distributions is that workers and gynes appear to have different fathers. However, apparent genetic differences between castes are caused by changing paternity among all females. Temporal variation in the relative frequency of patrilines may be a consequence of processes that reflect sexual conflict, such as sperm clumping. Recent work documenting genotype differences between physical castes (workers and gynes; major and minor workers) in several species of ants has been interpreted as evidence of genetic caste determination. Reanalysis of these studies found little support for this hypothesis. Apparent caste determination may result from temporal variation in sperm use, rather than from fertilization bias among male ejaculates

    Body size and sperm quality in queen- and worker-produced ant males

    Get PDF
    Workers of many species of social Hymenoptera have functional ovaries and are capable of laying haploid, unfertilized eggs, at least in the absence of a queen. Except for honeybees, it remains largely unknown whether worker-produced males have the same quality as queen-produced males and whether workers benefit in direct fitness by producing their sons. Previous studies in the monogynous ant Temnothorax crassispinus revealed that a high proportion of males in natural and laboratory colonies are worker offspring. Here, we compare longevity, body size, sperm length and sperm viability between queen- and worker-produced males. We either split queenright colonies into queenright and queenless halves or removed the queen from a fraction of the queenright colonies and then examined the newly produced males. Male quality traits varied considerably among colonies but differed only slightly between queen- and worker-produced males. Worker-produced males outnumbered queen-produced males and also had a longer lifespan, but under certain rearing conditions sperm from queen-produced males had a higher viability
    corecore