22 research outputs found
Mercury isotopes in a forested ecosystem: Implications for airâsurface exchange dynamics and the global mercury cycle
Forests mediate the biogeochemical cycling of mercury (Hg) between the atmosphere and terrestrial ecosystems; however, there remain many gaps in our understanding of these processes. Our objectives in this study were to characterize Hg isotopic composition within forests, and use natural abundance stable Hg isotopes to track sources and reveal mechanisms underlying the cycling of Hg. We quantified the stable Hg isotopic composition of foliage, forest floor, mineral soil, precipitation, and total gaseous mercury (THg (g) ) in the atmosphere and in evasion from soil, in 10âyearâold aspen forests at the Rhinelander FACE experiment in northeastern Wisconsin, USA. The effect of increased atmospheric CO 2 and O 3 concentrations on Hg isotopic composition was small relative to differences among forest ecosystem components. Precipitation samples had δ 202 Hg values of â0.74 to 0.06â° and â 199 Hg values of 0.16 to 0.82â°. Atmospheric THg (g) had δ 202 Hg values of 0.48 to 0.93â° and â 199 Hg values of â0.21 to â0.15â°. Uptake of THg (g) by foliage resulted in a large (â2.89â°) shift in δ 202 Hg values; foliage displayed δ 202 Hg values of â2.53 to â1.89â° and â 199 Hg values of â0.37 to â0.23â°. Forest floor samples had δ 202 Hg values of â1.88 to â1.22â° and â 199 Hg values of â0.22 to â0.14â°. Mercury isotopes distinguished geogenic sources of Hg and atmospheric derived sources of Hg in soil, and showed that precipitation Hg only accounted for ~16% of atmospheric Hg inputs. The isotopic composition of Hg evasion from the forest floor was similar to atmospheric THg (g) ; however, there were systematic differences in δ 202 Hg values and MIF of even isotopes (â 200 Hg and â 204 Hg). Mercury evasion from the forest floor may have arisen from airâsurface exchange of atmospheric THg (g) , but was not the emission of legacy Hg from soils, nor reâemission of wetâdeposition. This implies that there was net atmospheric THg (g) deposition to the forest soils. Furthermore, MDF of Hg isotopes during foliar uptake and airâsurface exchange of atmospheric THg (g) resulted in the release of Hg with very positive δ 202 Hg values to the atmosphere, which is key information for modeling the isotopic balance of the global mercury cycle, and may indicate a shorter residence time than previously recognized for the atmospheric mercury pool. Key points Atmospheric Hg was fractionated during uptake by foliage (â2.89 permil δ202Hg) Hg evading from soil was from atmospheric Hg interaction with soil environment Airâsurface exchange of Hg releases Hg with positive δ202Hg to global reservoirPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/1/2011GB004202RRts04.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/2/2011GB004202RRts05.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/3/2011GB004202RRts01.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/4/gbc20021.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/5/2011GB004202RRts06.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/6/2011GB004202RRts02.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/7/2011GB004202RRts07.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/8/2011GB004202RRts03.pd
Dynamics of Dimethylated Monothioarsenate (DMMTA) in Paddy Soils and Its Accumulation in Rice Grains
Recommended from our members
Speciation and Attenuation of Arsenic and Selenium at Coal Combustion By-Product Management Facilities
Following completion of contracting activities, sites were identified for the field leachate characterization study. Sampling and Analyses Plans (SAPs) and Site Access Agreements (SAAs) were developed for each site. A total of ten sites were sampled during this reporting period. Among the trace constituents, boron, silicon, and strontium were present in highest concentrations, with median values above 1 mg/L (1,000 {micro}g/L). Work on the first of three sites for the detailed arsenic and selenium adsorption studies began in 2002, prior to completion of the final DOE award. Kd values ranged from 100 to 12,000 L/kg for arsenic (V), 15 to 160 L.kg for As(III), and 5 to 25 L/kg for Se(VI)
Recommended from our members
Speciation and Attenuation of Arsenic and Selenium at Coal Combustion By-Product Management Facilities
Field leachate samples are being collected from coal combustion product (CCP) management sites from several geographic locations in the United States to provide broad characterization of major and trace constituents in the leachate. In addition, speciation of arsenic, selenium, chromium, and mercury in the leachates is being determined. Through 2003, 35 samples were collected at 14 sites representing a variety of CCP types, management approaches, and source coals. Samples have been collected from leachate wells, leachate collection systems, drive-point piezometers, lysimeters, the ash/water interface at impoundments, impoundment outfalls and inlets, and seeps. Additional sampling at 23 sites has been conducted in 2004 or is planned for 2005. First-year results suggest distinct differences in the chemical composition of leachate from landfills and impoundments, and from bituminous and subbituminous coals. Concentrations of most constituents were generally higher in landfill leachate than in impoundment leachate. Sulfate, sodium, aluminum, molybdenum, vanadium, cadmium, mercury and selenium concentrations were higher in leachates for ash from subbituminous source coal. Calcium, boron, lithium, strontium, arsenic, antimony, and nickel were higher for ash from bituminous source coal. These variations will be explored in more detail when additional data from the 2004 and 2005 samples become available