216,617 research outputs found

    Radio-mode feedback in local AGNs: dependence on the central black hole parameters

    Full text link
    Radio mode feedback, in which most of the energy of an active galactic nucleus (AGN) is released in a kinetic form via radio-emitting jets, is thought to play an important role in the maintenance of massive galaxies in the present-day Universe. We study the link between radio emission and the properties of the central black hole in a large sample of local radio galaxies drawn from the Sloan Digital Sky Survey (SDSS), based on the catalogue of Best and Heckman (2012). Our sample is mainly dominated by massive black holes (mostly in the range 108−109M⊙10^8-10^9 M_{\odot}) accreting at very low Eddington ratios (typically λ<0.01\lambda < 0.01). In broad agreement with previously reported trends, we find that radio galaxies are preferentially associated with the more massive black holes, and that the radio loudness parameter seems to increase with decreasing Eddington ratio. We compare our results with previous studies in the literature, noting potential biases. The majority of the local radio galaxies in our sample are currently in a radiatively inefficient accretion regime, where kinetic feedback dominates over radiative feedback. We discuss possible physical interpretations of the observed trends in the context of a two-stage feedback process involving a transition in the underlying accretion modes.Comment: accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Incompleteness of Representation Theory: Hidden symmetries and Quantum Non-Integrability

    Get PDF
    Representation theory is shown to be incomplete in terms of enumerating all integrable limits of quantum systems. As a consequence, one can find exactly solvable Hamiltonians which have apparently strongly broken symmetry. The number of these hidden symmetries depends upon the realization of the Hamiltonian.Comment: 4 pages, Revtex, Phys. Rev. Lett. , July 27 (1997), in pres

    Chemical and kinetic equilibrations via radiative parton transport

    Full text link
    A hot and dense partonic system can be produced in the early stage of a relativistic heavy ion collision. How it equilibrates is important for the extraction of Quark-Gluon Plasma properties. We study the chemical and kinetic equilibrations of the Quark-Gluon Plasma using a radiative transport model. Thermal and Color-Glass-Condensate motivated initial conditions are used. We observe that screened parton interactions always lead to partial pressure isotropization. Different initial pressure anisotropies result in the same asymptotic evolution. Comparison of evolutions with and without radiative processes shows that chemical equilibration interacts with kinetic equilibration and radiative processes can contribute significantly to pressure isotropization.Comment: Presented at 24th International Nuclear Physics Conference (INPC2010), Vancouver, Canada, 4-9 July 201
    • …
    corecore