19 research outputs found

    X-ray bursts from solar flares behind the limb

    Get PDF
    X-ray bursts are identified from the UCSD OSO-7 X-ray experiment data. X-ray spectroheliograms of OSO-5, H alpha activity at the limb, and the emergence and disappearance of sunspot groups at the limb were studied and 17 active centers were found as likely seats of the X-ray bursts beyond the limb. The analysis of 37 X-ray bursts and their physical parameters is presented. Results show that (1) the distributions of maximum temperature, maximum emission measure, and characteristic cooling time of the over-the-limb events do not significantly differ from those of disk events; (2) that radiation is the dominant cooling mechanism for the hot flare plasma; and (3) that the scale height for X-ray emission in the 5-10 keV range is large. Observations show that the fraction of soft X-ray bursts which have a nonthermal component is the same on and off of the disk. Hard X-ray emission over extended regions is indicated

    The Lockheed OSO-8 program. Analysis of data from the mapping X-ray heliometer experiment

    Get PDF
    The final report describes the extent of the analysis effort, and other activities associated with the preservation and documentation of the data set are described. The main scientific results, which are related to the behavior of individual solar activity regions in the energy band 1.5 - 15 keV, are summarized, and a complete bibliography of publications and presentations is given. Copies of key articles are also provided

    Initiation and propagation of coronal mass ejections

    Full text link
    This paper reviews recent progress in the research on the initiation and propagation of CMEs. In the initiation part, several trigger mechanisms are discussed; In the propagation part, the observations and modelings of EIT waves/dimmings, as the EUV counterparts of CMEs, are described.Comment: 8 pages, 1 figure, an invited review, to appear in J. Astrophys. Astro

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    25 Years of Self-organized Criticality: Concepts and Controversies

    Get PDF
    Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC) has been one of the most stimulating concepts to come out of statistical mechanics and condensed matter theory in the last few decades, and has played a significant role in the development of complexity science. SOC, and more generally fractals and power laws, have attracted much comment, ranging from the very positive to the polemical. The other papers (Aschwanden et al. in Space Sci. Rev., 2014, this issue; McAteer et al. in Space Sci. Rev., 2015, this issue; Sharma et al. in Space Sci. Rev. 2015, in preparation) in this special issue showcase the considerable body of observations in solar, magnetospheric and fusion plasma inspired by the SOC idea, and expose the fertile role the new paradigm has played in approaches to modeling and understanding multiscale plasma instabilities. This very broad impact, and the necessary process of adapting a scientific hypothesis to the conditions of a given physical system, has meant that SOC as studied in these fields has sometimes differed significantly from the definition originally given by its creators. In Bak’s own field of theoretical physics there are significant observational and theoretical open questions, even 25 years on (Pruessner 2012). One aim of the present review is to address the dichotomy between the great reception SOC has received in some areas, and its shortcomings, as they became manifest in the controversies it triggered. Our article tries to clear up what we think are misunderstandings of SOC in fields more remote from its origins in statistical mechanics, condensed matter and dynamical systems by revisiting Bak, Tang and Wiesenfeld’s original papers

    Flare Observations

    Get PDF
    corecore