684 research outputs found

    Re-evaluation of the cation distribution in orthopyroxenes by the Moessbauer effect

    Get PDF
    Mossbauer spectra of orthopyroxenes at low temperature

    Benefits of joint LIGO -- Virgo coincidence searches for burst and inspiral signals

    Get PDF
    We examine the benefits of performing a joint LIGO--Virgo search for transient signals. We do this by adding burst and inspiral signals to 24 hours of simulated detector data. We find significant advantages to performing a joint coincidence analysis, above either a LIGO only or Virgo only search. These include an increased detection efficiency, at a fixed false alarm rate, to both burst and inspiral events and an ability to reconstruct the sky location of a signal.Comment: 11 pages 8 figures, Amaldi 6 proceeding

    The Jabal Akhdar Dome in the Oman Mountains : evolution of a dynamic fracture system

    Get PDF
    Acknowledgments: This study was carried out within the framework of DGMK (German Society for Petroleum and Coal Science and Technology) research project 718 “Mineral Vein Dynamics Modelling,” which is funded by the companies ExxonMobil Production Deutschland GmbH, GDF SUEZ E&P Deutschland GmbH, RWE Dea AG and Wintershall Holding GmbH, within the basic research program of the WEG Wirtschaftsverband Erdo¹l- und Erdgasgewinnung e.V. We thank the companies for their financial support and their permission to publish these results. The German University of Technology in Oman (GU-Tech) is acknowledged for its logistic support. We gratefully acknowledge the reviewers Andrea Billi and Jean-Paul Breton, whose constructive reviews greatly improved the manuscriptPeer reviewedPreprin

    High voltage electron microscopy and electron diffraction of pyroxenes in type B lunar samples from Apollo 11

    Get PDF
    Lunar pyroxene 10044 specimens cleaved and sectioned by diamond knife ultramicrotomy were examined by standard (75 to 100 kV) and high voltage (200 kV) electron microscopy and diffraction. Salient findings based on evaluation of 2000 plates show uniform 300 to 600 A-wide bands, probably corresponding to single crystal domains, with lattice spacings of 2. A High resolution bright and dark field images of iron-rich and magnesium-rich crystals were compared with corresponding electron diffraction patterns. Possible relations of observed structures to magnetic domains were considered

    Utilizing Astroinformatics to Maximize the Science Return of the Next Generation Virgo Cluster Survey

    Full text link
    The Next Generation Virgo Cluster Survey is a 104 square degree survey of the Virgo Cluster, carried out using the MegaPrime camera of the Canada-France-Hawaii telescope, from semesters 2009A-2012A. The survey will provide coverage of this nearby dense environment in the universe to unprecedented depth, providing profound insights into galaxy formation and evolution, including definitive measurements of the properties of galaxies in a dense environment in the local universe, such as the luminosity function. The limiting magnitude of the survey is g_AB = 25.7 (10 sigma point source), and the 2 sigma surface brightness limit is g_AB ~ 29 mag arcsec^-2. The data volume of the survey (approximately 50 terabytes of images), while large by contemporary astronomical standards, is not intractable. This renders the survey amenable to the methods of astroinformatics. The enormous dynamic range of objects, from the giant elliptical galaxy M87 at M(B) = -21.6, to the faintest dwarf ellipticals at M(B) ~ -6, combined with photometry in 5 broad bands (u* g' r' i' z'), and unprecedented depth revealing many previously unseen structures, creates new challenges in object detection and classification. We present results from ongoing work on the survey, including photometric redshifts, Virgo cluster membership, and the implementation of fast data mining algorithms on the infrastructure of the Canadian Astronomy Data Centre, as part of the Canadian Advanced Network for Astronomical Research (CANFAR).Comment: 8 pages, 2 figures. Accepted for the Joint Workshop and Summer School: Astrostatistics and Data Mining in Large Astronomical Databases, La Palma, May 30th - June 3rd 2011. A higher resolution version is available at http://sites.google.com/site/nickballastronomer/publication

    Searches for continuous gravitational waves from nine young supernova remnants

    No full text
    We describe directed searches for continuous gravitational waves (GWs) in data from the sixth Laser Interferometer Gravitational-wave Observatory (LIGO) science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of 10. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3–25.3 days using the matched-filtering F{\mathcal{F}}-statistic. We found no evidence of GW signals. We set 95% confidence upper limits as strong (low) as 4 × 10?25 on intrinsic strain, 2 × 10?7 on fiducial ellipticity, and 4 × 10?5 on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes

    A first comparison of search methods for gravitational wave bursts using LIGO and Virgo simulated data

    Get PDF
    We present a comparative study of 6 search methods for gravitational wave bursts using simulated LIGO and Virgo noise data. The data's spectra were chosen to follow the design sensitivity of the two 4km LIGO interferometers and the 3km Virgo interferometer. The searches were applied on replicas of the data sets to which 8 different signals were injected. Three figures of merit were employed in this analysis: (a) Receiver Operator Characteristic curves, (b) necessary signal to noise ratios for the searches to achieve 50 percent and 90 percent efficiencies, and (c) variance and bias for the estimation of the arrival time of a gravitational wave burst.Comment: GWDAW9 proceeding

    Improved source localization with LIGO India

    Full text link
    A global network of advanced gravitational wave interferometric detectors is under construction. These detectors will offer an order of magnitude improvement in sensitivity over the initial detectors and will usher in the era of gravitational wave astronomy. In this paper, we evaluate the benefits of relocating one of the advanced LIGO detectors to India.Comment: 7 pages, 3 figures, accepted for publication in proceedings of ICGC2011 conference. Localization figures update

    Gravitational waves from spinning eccentric binaries

    Full text link
    This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity. In addition, by investigating the validity of the energy balance relation we show that, on contrary to the general expectations, the post-Newtonian approximation should not be applied once the post-Newtonian parameter gets beyond the critical value ∌0.08−0.1\sim 0.08-0.1. Finally, by studying the early phase of the gravitational waves emitted by strongly eccentric binary systems---which could be formed e.g. in various many-body interactions in the galactic halo---we have found that they possess very specific characteristics which may be used to identify these type of binary systems.Comment: 37 pages, 18 figures, submitted to Class. Quantum Gra
    • 

    corecore