12 research outputs found

    The role of P2 receptors in controlling infections by intracellular pathogens

    Get PDF
    A growing number of studies have demonstrated the importance of ATPe-signalling via P2 receptors as an important component of the inflammatory response to infection. More recent studies have shown that ATPe can also have a direct effect on infection by intracellular pathogens, by modulating membrane trafficking in cells that contain vacuoles that harbour intracellular pathogens, such as mycobacteria and chlamydiae. A conserved mechanism appears to be involved in controlling infection by both of these pathogens, as a role for phospholipase D in inducing fusion between lysosomes and the vacuoles has been demonstrated. Other P2-dependent mechanisms are most likely operative in the cases of pathogens, such as Leishmania, which survive in an acidic phagolysosomal-like compartment. ATPe may function as a ‘danger signal–that alerts the immune system to the presence of intracellular pathogens that damage the host cell, while different intracellular pathogens have evolved enzymes or other mechanisms to inhibit ATPe-mediated signalling, which should, thus, be viewed as virulence factors for these pathogens

    Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum.

    No full text
    International audienceInfection of epithelial cells by the intracellular pathogen, Chlamydia trachomatis, leads to activation of NF-kappaB and secretion of pro-inflammatory cytokines. We find that overexpression of a dominant-negative Nod1 or depletion of Nod1 by RNA interference inhibits partially the activation of NF-kappaB during chlamydial infection in vitro, suggesting that Nod1 can detect the presence of Chlamydia. In parallel, there is a larger increase in the expression of pro-inflammatory genes following Chlamydia infection when primary fibroblasts are isolated from wild-type mice than from Nod1-deficient mice. The Chlamydia genome encodes all the putative enzymes required for proteoglycan synthesis, but proteoglycan from Chlamydia has never been detected biochemically. Since Nod1 is a ubiquitous cytosolic receptor for peptidoglycan from Gram-negative bacteria, our results suggest that C. trachomatis and C. muridarum do in fact produce at least the rudimentary proteoglycan motif recognized by Nod1. Nonetheless, Nod1 deficiency has no effect on the efficiency of infection, the intensity of cytokine secretion, or pathology in vaginally infected mice, compared with wild-type controls. Similarly, Rip2, a downstream mediator of Nod1, Toll-like receptor (TLR)-2, and TLR4, increases only slightly the intensity of chlamydial infection in vivo and has a very mild effect on the immune response and pathology. Thus, Chlamydia may not produce sufficient peptidoglycan to stimulate Nod1-dependent pathways efficiently in infected animals, or other receptors of the innate immune system may compensate for the absence of Nod1 during Chlamydia infection in vivo

    Effect of Chlamydia trachomatis

    No full text
    The pathology observed during Chlamydia infection is due initially to localized tissue damage caused by the infection itself, followed by deleterious host inflammatory responses that lead to permanent scarring. We have recently reported that the infection by Chlamydia in vitro results in apoptosis of epithelial cells and macrophages and that infected monocytes secrete the proinflammatory cytokine interleukin-1β. At the same time, proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) can also trigger apoptosis of susceptible cells. To study the possible relationship between Chlamydia trachomatis infection and apoptosis in vivo, we used the terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling technique to determine whether infection may cause apoptosis in the genital tract of mice and, conversely, whether cytokines produced during the inflammatory response may modulate the level of apoptosis. Our results demonstrate that infected cells in the endocervix at day 2 or 7 after infection are sometimes apoptotic, although there was not a statistically significant change in the number of apoptotic cells in the endocervix. However, large clumps of apoptotic infected cells were observed in the lumen, suggesting that apoptotic cells may be shed from the endocervix. Moreover, there was a large increase in the number of apoptotic cells in the uterine horns and oviducts after 2 or 7 days of infection, which was accompanied by obvious signs of upper tract pathology. Interestingly, depletion of TNF-α led to a decrease in the level of apoptosis in the uterine horns and oviducts of animals infected for 7 days, suggesting that the inflammatory cytokines may exert part of their pathological effect via apoptosis in infected tissues

    Fc receptor regulation of protective immunity against Chlamydia trachomatis

    No full text
    The prevailing paradigm for designing potentially efficacious vaccines against the obligate intracellular bacterium, Chlamydia trachomatis, advocates regimens capable of inducing a mucosal antigen-specific T helper type 1 (Th1) response. However, recent reports indicate that rapid and efficient clearance of a secondary infection also requires certain B-cell functions. We investigated the hypothesis that Fc receptor (FcR)-mediated antibody effector mechanisms are important B-cell-related functions involved in controlling a chlamydial genital reinfection. Microbiological analysis of genital chlamydial infection in FcR knockout (FcRKO) mice lacking the activatory FcγRI (CD64) and FcRγIII (CD16), as well as the inhibitory FcγRIIB1 (CD32), revealed a greater intensity of secondary infection (i.e. bacterial shedding) in FcR(−/−) as compared to FcR(+/+) mice; however, the course of the primary infection was indistinguishable in both animals. Pathologically, FcRKO mice suffered greater ascending infection than immunocompetent wild-type (WT) mice after a secondary infection. Immunological evaluation indicated that the presence of specific anti-chlamydial antibodies enhanced chlamydial antigen presentation for induction of a Th1 response by FcR(+/+), but not FcR(−/−), antigen-presenting cells. In addition, specific anti-chlamydial antibodies augmented both macrophage killing of infected epithelial cells by antibody-dependent cellular cytotoxicity (ADCC) and macrophage inhibition of productive growth of chlamydiae in co-cultures. These results indicate that B cells participate in anti-chlamydial immunity via FcR-mediated effector functions of antibodies, which are operative during reinfections. Such effector functions include ADCC, and possibly enhanced uptake, processing and presentation of chlamydial antigens for rapid induction of a Th1 response, all facilitating the early clearance of an infection. These findings suggest that a future anti-chlamydial vaccine should elicit both humoral and T-cell-mediated immune responses for optimal memory response and vaccine efficacy

    Chlamydia Infection and Pneumonia

    No full text
    corecore