44 research outputs found
Influence of head size on the development of metallic wear and on the characteristics of carbon layers in metal-on-metal hip joints
Background and purpose Particles originating from the articulating surfaces of hip endoprostheses often induce an inflammatory response, which can be related to implant failure. We therefore analyzed the metal content in capsular tissue from 44 McKee-Farrar metal-on-metal hip prostheses (with 3 different head sizes) and we also analyzed the morphological structure of layers located on articulating surfaces
Expression and Activity of a Novel Cathelicidin from Domestic Cats
Cathelicidins are small cationic antimicrobial peptides found in many species including primates, mammals, marsupials, birds and even more primitive vertebrates, such as the hagfish. Some animals encode multiple cathelicidins in their genome, whereas others have only one. This report identifies and characterizes feline cathelicidin (feCath) as the sole cathelicidin in domestic cats (Felis catus). Expression of feCath is predominantly found in the bone marrow, with lower levels of expression in the gastrointestinal tract and skin. By immunocytochemistry, feCath localizes to the cytoplasm of neutrophils in feline peripheral blood. Structurally, the mature feCath sequence is most similar to a subgroup of cathelicidins that form linear α-helices. feCath possesses antimicrobial activity against E. coli D31, Salmonella enterica serovar Typhimurium (IR715), Listeria monocytogenes and Staphylococcus pseudintermedius (clinical isolate) similar to that of the human ortholog, LL-37. In contrast, feCath lacks the DNA binding activity seen with LL-37. Given its similarity in sequence, structure, tissue expression, and antimicrobial activity, the cathelicidin encoded by cats, feCath, belongs to the subgroup of linear cathelicidins found not only in humans, but also non-human primates, dogs, mice, and rats
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
A non-tight junction function of claudin-7—Interaction with integrin signaling in suppressing lung cancer cell proliferation and detachment
Background
Claudins are a family of tight junction (TJ) membrane proteins involved in a broad spectrum of human diseases including cancer. Claudin-7 is a unique TJ membrane protein in that it has a strong basolateral membrane distribution in epithelial cells and in tissues. Therefore, this study aims to investigate the functional significance of this non-TJ localization of claudin-7 in human lung cancer cells.
Methods
Claudin-7 expression was suppressed or deleted by lentivirus shRNA or by targeted-gene deletion. Cell cycle analysis and antibody blocking methods were employed to assay cell proliferation and cell attachment, respectively. Electron microscopy and transepthelial electrical resistance measurement were performed to examine the TJ ultrastructure and barrier function. Co-immunolocalization and co-immunoprecipitation was used to study claudin-7 interaction with integrin β1. Tumor growth in vivo were analyzed using athymic nude mice.
Results
Claudin-7 co-localizes and forms a stable complex with integrin β1. Both suppressing claudin-7 expression by lentivirus shRNA in human lung cancer cells (KD cells) and deletion of claudin-7 in mouse lungs lead to the reduction in integrin β1 and phospho-FAK levels. Suppressing claudin-7 expression increases cell growth and cell cycle progression. More significantly, claudin-7 KD cells have severe defects in cell-matrix interactions and adhere poorly to culture plates with a remarkably reduced integrin β1 expression. When cultured on uncoated glass coverslips, claudin-7 KD cells grow on top of each other and form spheroids while the control cells adhere well and grow as a monolayer. Reintroducing claudin-7 reduces cell proliferation, upregulates integrin β1 expression and increases cell-matrix adhesion. Integrin β1 transfection partially rescues the cell attachment defect. When inoculated into nude mice, claudin-7 KD cells produced significantly larger tumors than control cells.
Conclusion
In this study, we identified a previously unrecognized function of claudin-7 in regulating cell proliferation and maintaining epithelial cell attachment through engaging integrin β1
The Short-Term Effect of Weight Loss Surgery on Volumetric Breast Density and Fibroglandular Volume
Purpose:
Obesity and breast density are both associated with an increased risk of breast cancer and are potentially modifiable. Weight loss surgery (WLS) causes a significant reduction in the amount of body fat and a decrease in breast cancer risk. The effect of WLS on breast density and its components has not been documented. Here, we analyze the impact of WLS on volumetric breast density (VBD) and on each of its components (fibroglandular volume and breast volume) by using three-dimensional methods.
Materials and Methods:
Fibroglandular volume, breast volume, and their ratio, the VBD, were calculated from mammograms before and after WLS by using Volparaâ„¢ automated software.
Results:
For the 80 women included, average body mass index decreased from 46.0 ± 7.22 to 33.7 ± 7.06 kg/m2. Mammograms were performed on average 11.6 ± 9.4 months before and 10.1 ± 7 months after WLS. There was a significant reduction in average breast volume (39.4 % decrease) and average fibroglandular volume (15.5 % decrease), and thus, the average VBD increased from 5.15 to 7.87 % (p < 1 × 10−9) after WLS. When stratified by menopausal status and diabetic status, VBD increased significantly in all groups but only perimenopausal and postmenopausal women and non-diabetics experienced a significant reduction in fibroglandular volume.
Conclusions:
Breast volume and fibroglandular volume decreased, and VBD increased following WLS, with the most significant change observed in postmenopausal women and non-diabetics. Further studies are warranted to determine how physical and biological alterations in breast density components after WLS may impact breast cancer risk.ECU Open Access Publishing Support Fun
Using gradient boosting regression to improve ambient solar wind model predictions
Studying the ambient solar wind, a continuous pressure‐driven plasma flow emanating from our Sun, is an important component of space weather research. The ambient solar wind flows in interplanetary space determine how solar storms evolve through the heliosphere before reaching Earth, and especially during solar minimum are themselves a driver of activity in the Earth’s magnetic field. Accurately forecasting the ambient solar wind flow is therefore imperative to space weather awareness. Here we present a machine learning approach in which solutions from magnetic models of the solar corona are used to output the solar wind conditions near the Earth. The results are compared to observations and existing models in a comprehensive validation analysis, and the new model outperforms existing models in almost all measures. In addition, this approach offers a new perspective to discuss the role of different input data to ambient solar wind modeling, and what this tells us about the underlying physical processes. The final model discussed here represents an extremely fast, well‐validated and open‐source approach to the forecasting of ambient solar wind at Earth
Nutrition strategy and life style in polycystic ovary syndrome—narrative review
Here we present an extensive narrative review of the broadly understood modifications to the lifestyles of women with polycystic ovary syndrome (PCOS). The PubMed database was analyzed, combining PCOS entries with causes, diseases, diet supplementation, lifestyle, physical activity, and use of herbs. The metabolic pathways leading to disturbances in lipid, carbohydrate, and hormonal metabolism in targeted patients are described. The article refers to sleep disorders, changes in mental health parameters, and causes of oxidative stress and inflammation. These conditions consistently lead to the occurrence of severe diseases in patients suffering from diabetes, the fatty degeneration of internal organs, infertility, atherosclerosis, cardiovascular diseases, dysbiosis, and cancer. The modification of lifestyles, diet patterns and proper selection of nutrients, pharmacological and natural supplementation in the form of herbs, and physical activity have been proposed. The progress and consequences of PCOS are largely modifiable and depend on the patient’s approach, although we have to take into account also the genetic determinants
On solar cycle predictions and reconstructions
Context.
Generally, there are two procedures for solar cycle predictions:
the empirical methods – statistical methods based on extrapolations
and precursor methods – and methods based on dynamo models.
Aims.
The goal of the present analysis is to forecast the strength and epochs of
the next solar cycle, to investigate proxies for grand solar minima and to
reconstruct the relative sunspot number in the Maunder minimum.
Methods.
We calculate the asymmetry of the ascending and descending solar
cycle phases (Method 1) and use this parameter as a proxy for solar activity
on longer time scales. Further, we correlate the relative sunspot numbers in
the epochs of solar activity minima and maxima (Method 2) and
estimate the parameters of an autoregressive moving average model
(ARMA, Method 3). Finally, the power spectrum of data obtained with the Method
1 is analysed and the Methods 1 and 3 are combined.
Results.
Signatures of the Maunder, Dalton and Gleissberg minima were found with
Method 1. A period of about 70 years, somewhat shorter than the Gleissberg
period was identified in the asymmetry data. The maximal smoothed monthly
sunspot number during the Maunder minimum was reconstructed and found to be
in the range 0–35 (Method 1). The estimated Wolf number
(also called the relative sunspot number) of the next solar maximum is
in the range
88–102 (Method 2). Method 3 predicts the next
solar maximum between 2011 and 2012 and the next solar minimum for 2017.
Also, it forecasts the relative sunspot number in the next maximum to be
. A combination of the Methods 1 and 3 gives for the next solar maximum relative sunspot numbers between 78 and 99.
Conclusions.
The asymmetry parameter provided by Method 1 is a good proxy for solar
activity in the past, also in the periods for which no relative sunspot
numbers are available. Our prediction for the next solar cycle No. 24 is
that it will be weaker than the last cycle, No. 23. This prediction is based
on various independent methods