40 research outputs found

    The interweaving roles of mineral and microbiome in shaping the antibacterial activity of archaeological medicinal clays

    Get PDF
    Ethnopharmacological relevance: Medicinal Earths (MEs), natural aluminosilicate-based substances (largely kaolinite and montmorillonite), have been part of the European pharmacopoeia for well over two millennia; they were used generically as antidotes to ‘poison’. Aim of the study: To test the antibacterial activity of three Lemnian and three Silesian Earths, medicinal earths in the collection of the Pharmacy Museum of the University of Basel, dating to 16th-18th century and following the methodology outlined in the graphical abstract. To compare them with natural clays of the same composition (reference clays) and synthetic clays (natural clays spiked with elements such as B, Al, Ti and Fe); to assess the parameters which drive antibacterial activity, when present, in each group of samples. Materials and methods: a total of 31 samples are investigated chemically (ICP-MS), mineralogically (both bulk (XRD) and at the nano-sized level (TEM-EDAX)); their organic load (bacterial and fungal) is DNA-sequenced; their bioactivity (MIC 60) is tested against Gram-positive, S. aureus and Gram-negative, P. aeruginosa. Results: Reference smectites and kaolinites show no antibacterial activity against the above pathogens. However, the same clays when spiked with B or Al (but not with Ti or Fe) do show antibacterial activity. Of the six MEs, only two are antibacterial against both pathogens. Following DNA sequencing of the bioactive MEs, we show the presence within of a fungal component, Talaromyces sp, a fungus of the family of Trichocomaceae (order Eurotiales), historically associated with Penicillium. Talaromyces is a known producer of the exometabolite bioxanthracene B, and in an earlier publication we have already identified a closely related member of the bioxanthracene group, in association with one of the LE samples examined here. By linking fungus to its exometabolite we suggest that this fungal load may be the key parameter driving antibacterial activity of the MEs. Conclusions: Antibacterial activity in kaolinite and smectite clays can arise either from spiking natural clays with elements like B and Al, or from an organic (fungal) load found only within some archaeological earths. It cannot be assumed, a priori, that this organic load was acquired randomly and as a result of long-term storage in museum collections. This is because, at least in the case of medicinal Lemnian Earth, there is historical evidence to suggest that the addition of a fungal component may have been deliberate

    Greco-Roman mineral (litho)therapeutics and their relationship to their microbiome : the case of the red pigment miltos

    Get PDF
    This paper introduces a holistic approach to the study of Greco-Roman (G-R) lithotherapeutics. These are the minerals or mineral combinations that appear in the medical and scientific literature of the G-R world. It argues that they can best be described not simply in terms of their bulk chemistry/mineralogy but also their ecological microbiology and nanofraction component. It suggests that each individual attribute may have underpinned the bioactivity of the lithotherapeutic as an antibacterial, antifungal or other. We focus on miltos, the highly prized, naturally fine, red iron oxide-based mineral used as a pigment, in boat maintenance, agriculture and medicine. Five samples (four geological (from Kea, N. Cyclades) and one archaeological (from Lemnos, NE Aegean)) of miltos were analyzed with physical and biological science techniques. We show that: a. Kean miltos and Lemnian earth/miltos must have been chemically and mineralogically different; b. Lemnian miltos must have been more effective as an antibacterial against specific pathogens (Gram + and Gram − bacteria) than its Kean counterpart; c. two samples of Kean miltos, although similar, chemically, mineralogically and eco-microbiologically (phylum/class level), nevertheless, displayed different antibacterial action. We suggest that this may constituteproof of microbial ecology playing an important role in effecting bioactivity and, interestingly, at the more specific genus/species level. From the perspective of the historian of G-R science, we suggest that it may have been on account of its bioactivity, rather than simply its 'red-staining' effect, that miltos gained prominent entry into the scientific and medical literature of the G-R world

    Dissolved oxygen technologies as a novel strategy for non-healing wounds: A critical review

    No full text
    Non-healing wounds are steadily becoming a global-health issue. Prolonged hypoxia propagates wound chronicity; yet, oxygenating treatments are considered inadequate to date. Dissolved oxygen (DO) in aqueous solutions introduces a novel approach to enhanced wound oxygenation, and is robustly evaluated for clinical applications. A systematic literature search was conducted, whereby experimental and clinical studies of DO technologies were categorized per engineering approach. Technical principles, methodology, endpoints and outcomes were analysed for both oxygenating and healing effects. Forty articles meeting our inclusion criteria were grouped as follows: DO solutions (17), oxygen (O2) dressings (9), O2 hydrogels (11) and O2 emulsions (3). All technologies improved wound oxygenation, each to a variable degree. They also achieved at least one statistically significant outcome related to wound healing, mainly in epithelialization, angiogenesis and collagen synthesis. Scarcity in clinical data and methodological variability precluded quantitative comparisons among the biotechnologies studied. DO technologies warrantee further evaluation for wound oxygenation in the clinical setting. Standardised methodologies and targeted research questions are pivotal to facilitate global integration in healthcare. © 2021 The Wound Healing Society
    corecore