2,859 research outputs found
Effective-Hamiltonian modeling of external pressures in ferroelectric perovskites
The phase-transition sequence of a ferroelectric perovskite such as BaTiO_3
can be simulated by computing the statistical mechanics of a first-principles
derived effective Hamiltonian [Zhong, Vanderbilt and Rabe, Phys. Rev. Lett. 73,
1861 (1994)]. Within this method, the effect of an external pressure (in
general, of any external field) can be studied by considering the appropriate
"enthalpy" instead of the effective Hamiltonian itself. The legitimacy of this
approach relies on two critical assumptions that, to the best of our knowledge,
have not been adequately discussed in the literature to date: (i) that the
zero-pressure relevant degrees of freedom are still the only relevant degrees
of freedom at finite pressures, and (ii) that the truncation of the Taylor
expansion of the energy considered in the effective Hamiltonian remains a good
approximation at finite pressures. Here we address these issues in detail and
present illustrative first-principles results for BaTiO_3. We also discuss how
to construct effective Hamiltonians in cases in which these assumptions do not
hold.Comment: 5 pages, with 2 postscript figures embedded. Proceedings of
"Fundamental Physics of Ferroelectrics, 2002", R. Cohen and T. Egami, eds.
(AIP, Melville, New York, 2002). Also available at
http://www.physics.rutgers.edu/~dhv/preprints/ji_effp/index.htm
Influence of interface structure on electronic properties and Schottky barriers in Fe/GaAs magnetic junctions
The electronic and magnetic properties of Fe/GaAs(001) magnetic junctions are
investigated using first-principles density-functional calculations. Abrupt and
intermixed interfaces are considered, and the dependence of charge transfer,
magnetization profiles, Schottky barrier heights, and spin polarization of
densities of states on interface structure is studied. With As-termination, an
abrupt interface with Fe is favored, while Ga-terminated GaAs favors the
formation of an intermixed layer with Fe. The Schottky barrier heights are
particularly sensitive to the abruptness of the interface. A significant
density of states in the semiconducting gap arises from metal interface states.
These spin-dependent interface states lead to a significant minority spin
polarization of the density of states at the Fermi level that persists well
into the semiconductor, providing a channel for the tunneling of minority spins
through the Schottky barrier. These interface-induced gap states and their
dependence on atomic structure at the interface are discussed in connection
with potential spin-injection applications.Comment: 9 pages, 9 figures, to appear in PR
First-principles study of epitaxial strain in perovskites
Using an extension of a first-principles method developed by King-Smith and
Vanderbilt [Phys. Rev. B {\bf 49}, 5828 (1994)], we investigate the effects of
in-plane epitaxial strain on the ground-state structure and polarization of
eight perovskite oxides: BaTiO, SrTiO, CaTiO, KNbO, NaNbO,
PbTiO, PbZrO, and BaZrO. In addition, we investigate the effects of
a nonzero normal stress. The results are shown to be useful in predicting the
structure and polarization of perovskite oxide thin films and superlattices.Comment: 10 page
Predicting polarization enhancement in multicomponent ferroelectric superlattices
Ab initio calculations are utilized as an input to develop a simple model of
polarization in epitaxial short-period CaTiO3/SrTiO3/BaTiO3 superlattices grown
on a SrTiO3 substrate. The model is then combined with a genetic algorithm
technique to optimize the arrangement of individual CaTiO3, SrTiO3 and BaTiO3
layers in a superlattice, predicting structures with the highest possible
polarization and a low in-plane lattice constant mismatch with the substrate.
This modelling procedure can be applied to a wide range of layered
perovskite-oxide nanostructures providing guidance for experimental development
of nanoelectromechanical devices with substantially improved polar properties.Comment: 4 pages, submitted to PR
Unusual structural tuning of magnetism in cuprate perovskites
Understanding the structural underpinnings of magnetism is of great
fundamental and practical interest. Se_{1-x}Te_{x}CuO_{3} alloys are model
systems for the study of this question, as composition-induced structural
changes control their magnetic interactions. Our work reveals that this
structural tuning is associated with the position of the supposedly dummy atoms
Se and Te relative to the super-exchange (SE) Cu--O--Cu paths, and not with the
SE angles as previously thought. We use density functional theory,
tight-binding, and exact diagonalization methods to unveil the cause of this
surprising effect and hint at new ways of engineering magnetic interactions in
solids.Comment: 4 pages, with 4 postscript figures embedded. Uses REVTEX4 and
graphicx macro
Compositional Inversion Symmetry Breaking in Ferroelectric Perovskites
Ternary cubic perovskite compounds of the form A_(1/3)A'_(1/3)A''_(1/3)BO_3
and AB_(1/3)B'_(1/3)B''_(1/3)O_3, in which the differentiated cations form an
alternating series of monolayers, are studied using first-principles methods.
Such compounds are representative of a possible new class of materials in which
ferroelectricity is perturbed by compositional breaking of inversion symmetry.
For isovalent substitution on either sublattice, the ferroelectric double-well
potential is found to persist, but becomes sufficiently asymmetric that
minority domains may no longer survive. The strength of the symmetry breaking
is enormously stronger for heterovalent substitution, so that the double-well
behavior is completely destroyed. Possible means of tuning between these
behaviors may allow for the optimization of resulting materials properties.Comment: 4 pages, two-column style with 3 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#sai_is
Electronic Structure of Sodium Cobalt Oxide: Comparing Mono- and Bilayer-hydrate
To shed new light on the mechanism of superconductivity in sodium cobalt
oxide bilayer-hydrate (BLH), we perform a density functional calculation with
full structure optimization for BLH and its related nonsuperconducting phase,
monolayer hydrate (MLH). We find that these hydrates have similar band
structures, but a notable difference can be seen in the band around
the Fermi level. While its dispersion in the direction is negligibly small
for BLH, it is of the order of 0.1 eV for MLH. This result implies that the
three dimensional feature of the band may be the origin for the
absence of superconductivity in MLH.Comment: 5 pages, 7 figures, to be published in Phys. Rev.
Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals
We derive a multi-band formulation of the orbital magnetization in a normal
periodic insulator (i.e., one in which the Chern invariant, or in 2d the Chern
number, vanishes). Following the approach used recently to develop the
single-band formalism [T. Thonhauser, D. Ceresoli, D. Vanderbilt, and R. Resta,
Phys. Rev. Lett. {\bf 95}, 137205 (2005)], we work in the Wannier
representation and find that the magnetization is comprised of two
contributions, an obvious one associated with the internal circulation of
bulk-like Wannier functions in the interior and an unexpected one arising from
net currents carried by Wannier functions near the surface. Unlike the
single-band case, where each of these contributions is separately
gauge-invariant, in the multi-band formulation only the \emph{sum} of both
terms is gauge-invariant. Our final expression for the orbital magnetization
can be rewritten as a bulk property in terms of Bloch functions, making it
simple to implement in modern code packages. The reciprocal-space expression is
evaluated for 2d model systems and the results are verified by comparing to the
magnetization computed for finite samples cut from the bulk. Finally, while our
formal proof is limited to normal insulators, we also present a heuristic
extension to Chern insulators (having nonzero Chern invariant) and to metals.
The validity of this extension is again tested by comparing to the
magnetization of finite samples cut from the bulk for 2d model systems. We find
excellent agreement, thus providing strong empirical evidence in favor of the
validity of the heuristic formula.Comment: 14 pages, 8 figures. Fixed a typo in appendix
- …
