523 research outputs found

    Time-dependent approach to many-particle tunneling in one-dimension

    Full text link
    Employing the time-dependent approach, we investigate a quantum tunneling decay of many-particle systems. We apply it to a one-dimensional three-body problem with a heavy core nucleus and two valence protons. We calculate the decay width for two-proton emission from the survival probability, which well obeys the exponential decay-law after a sufficient time. The effect of the correlation between the two emitted protons is also studied by observing the time evolution of the two-particle density distribution. It is shown that the pairing correlation significantly enhances the probability for the simultaneous diproton decay.Comment: 9 pages, 10 eps figure

    Effective moment of inertia for several fission reaction systems induced by nucleons, light particles and heavy ions

    Full text link
    Compound nucleus effective moment of inertia has been calculated for several fission reaction systems induced by nucleons, light particles, and heavy ions. Determination of this quantity for these systems is based upon the comparison between the experimental data of the fission fragment angular distributions as well as the prediction of the standard saddle-point statistical model (SSPSM). For the systems, the two cases, namely with and without neutron emission corrections were considered. In these calculations, it is assumed that all the neutrons are emitted before reaching the saddle point.It should be noted that the above method for determining of the effective moment of inertia had not been reported until now and this method is used for the first time to determine compound nucleus effective moment of inertia. Hence, our calculations are of particular importance in obtaining this quantity, and have a significant rule in the field of fission physics. Afterwards, our theoretical results have been compared with the data obtained from the rotational liquid drop model as well as the Sierk model, and satisfactory agreements were found. Finally, we have considered the effective moment of inertia of compound nuclei for the systems that formed similar compound nuclei at similar excitation energies.Comment: 9 pages, 2 Figures, 2 Table

    Book Reviews

    Get PDF

    An evaporation-based model of thermal neutron induced ternary fission of plutonium

    Get PDF
    Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~1.2 MeV and ~10^-22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission.Comment: 25 pages, 12 figures, accepted for publication in IJMP

    Atmospheric correction of AVIRIS data of Monterey Bay contaminated by thin cirrus clouds

    Get PDF
    Point source measurements (e.g. sun photometer data, weather station observations) are often used to constrain radiative transfer models such as MODTRAN/LOWTRAN7 when atmospherically correcting AVIRIS imagery. The basic assumption is that the atmosphere is horizontally homogeneous throughout the entire area. If the target area of interest is isolated a distance away from the point measurement position, the calculated visibility and atmospheric profiles may not be characteristic of the atmosphere over the target. AVIRIS scenes are often rejected when cloud cover exceeds 10%. However, if the cloud cover is determined to be primarily cirrus rather than cumulus, in-water optical properties may still be extracted over open ocean. High altitude cirrus clouds are non-absorbing at 744 nm. If the optical properties of the AVIRIS scene can be determined from the 744 nm band itself, the atmospheric conditions during the overflight may be deduced

    The interaction of 11Li with 208Pb

    Full text link
    Background: 11Li is one of the most studied halo nuclei. The fusion of 11Li with 208Pb has been the subject of a number of theoretical studies with widely differing predictions, ranging over four orders of magnitude, for the fusion excitation function. Purpose: To measure the excitation function for the 11Li + 208Pb reaction. Methods: A stacked foil/degrader assembly of 208Pb targets was irradiated with a 11Li beam producing center of target beam energies from above barrier to near barrier energies (40 to 29 MeV). The intensity of the 11Li beam (chopped) was 1250 p/s and the beam on-target time was 34 hours. The alpha-decay of the stopped evaporation residues was detected in a alpha-detector array at each beam energy in the beam-off period (the beam was on for <= 5 ns and then off for 170 ns). Results: The 215At evaporation residues were associated with the fusion of 11Li with 208Pb. The 213,214At evaporation residues were formed by the breakup of 11Li into 9Li + 2n, with the 9Li fusing with 208Pb. The 214At evaporation residue appears to result from a "quasi-breakup" process. Conclusions: Most of 11Li + 208Pb interactions lead to breakup with a small fraction (<= 11%) leading to complete fusion.Comment: 25 pages, 11 figure

    Fusion of radioactive 132^{132}Sn with 64^{64}Ni

    Full text link
    Evaporation residue and fission cross sections of radioactive 132^{132}Sn on 64^{64}Ni were measured near the Coulomb barrier. A large sub-barrier fusion enhancement was observed. Coupled-channel calculations including inelastic excitation of the projectile and target, and neutron transfer are in good agreement with the measured fusion excitation function. When the change in nuclear size and shift in barrier height are accounted for, there is no extra fusion enhancement in 132^{132}Sn+64^{64}Ni with respect to stable Sn+64^{64}Ni. A systematic comparison of evaporation residue cross sections for the fusion of even 112−124^{112-124}Sn and 132^{132}Sn with 64^{64}Ni is presented.Comment: 9 pages, 11 figure

    Prospects for the discovery of the next new element: Influence of projectiles with Z > 20

    Full text link
    The possibility of forming new superheavy elements with projectiles having Z > 20 is discussed. Current research has focused on the fusion of 48Ca with actinides targets, but these reactions cannot be used for new element discoveries in the future due to a lack of available target material. The influence on reaction cross sections of projectiles with Z > 20 have been studied in so-called analog reactions, which utilize lanthanide targets carefully chosen to create compound nuclei with energetics similar to those found in superheavy element production. The reactions 48Ca, 45Sc, 50Ti, 54Cr + 159Tb, 162Dy have been studied at the Cyclotron Institute at Texas A&M University using the Momentum Achromat Recoil Spectrometer. The results of these experimental studies are discussed in terms of the influence of collective enhancements to level density for compound nuclei near closed shells, and the implications for the production of superheavy elements. We have observed no evidence to contradict theoretical predictions that the maximum cross section for the 249Cf(50Ti, 4n)295120 and 248Cm(54Cr, 4n)298120 reactions should be in the range of 10-100 fb.Comment: An invited talk given by Charles M. Folden III at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. Also contains information presented by Dmitriy A. Mayorov and Tyler A. Werke in separate contributions to the conference. This contribution will appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Decay modes of 250No

    Full text link
    The Fragment Mass Analyzer at the ATLAS facility has been used to unambiguously identify the mass number associated with different decay modes of the nobelium isotopes produced via 204Pb(48Ca,xn)(252-x)No reactions. Isotopically pure (>99.7%) 204Pb targets were used to reduce background from more favored reactions on heavier lead isotopes. Two spontaneous fission half-lives (t_1/2 = 3.7+1.1-0.8 us and 43+22-15 us) were deduced from a total of 158 fission events. Both decays originate from 250No rather than from neighboring isotopes as previously suggested. The longer activity most likely corresponds to a K-isomer in this nucleus. No conclusive evidence for an alpha branch was observed, resulting in upper limits of 2.1% for the shorter lifetime and 3.4% for the longer activity.Comment: RevTex4, 10 pages, 5 figures, submitted to PR

    Thermal fission rate around super-normal phase transition

    Get PDF
    Using Langer's ImFIm F method, we discuss the temperature dependence of nuclear fission width in the presence of dissipative environments. We introduce a low cut-off frequency to the spectral density of the environmental oscillators in order to mimic the pairing gap. It is shown that the decay width rapidly decreases at the critical temperature, where the phase transition from super to normal fluids takes place. Relation to the recently observed threshold for the dissipative fission is discussed.Comment: 12 pages, Latex, Submitted to Physical Review C for publication, 3 Postscript figures are available by request from [email protected]
    • 

    corecore