809 research outputs found
Optimized Dynamical Decoupling for Time Dependent Hamiltonians
The validity of optimized dynamical decoupling (DD) is extended to
analytically time dependent Hamiltonians. As long as an expansion in time is
possible the time dependence of the initial Hamiltonian does not affect the
efficiency of optimized dynamical decoupling (UDD, Uhrig DD). This extension
provides the analytic basis for (i) applying UDD to effective Hamiltonians in
time dependent reference frames, for instance in the interaction picture of
fast modes and for (ii) its application in hierarchical
DD schemes with pulses about two perpendicular axes in spin space. to
suppress general decoherence, i.e., longitudinal relaxation and dephasing.Comment: 5 pages, no figure
Magnetic Properties of (VO)_2P_2O_7 from Frustrated Interchain Coupling
Neutron-scattering experiments on (VO)_2P_2O_7 reveal both a gapped magnon
dispersion and an unexpected, low-lying second mode. The proximity and
intensity of these modes suggest a frustrated coupling between the alternating
spin chains. We deduce the minimal model containing such a frustration, and
show that it gives an excellent account of the magnon dispersion, static
susceptibility and electron spin resonance absorption. We consider two-magnon
states which bind due to frustration, and demonstrate that these may provide a
consistent explanation for the second mode.Comment: RevTeX, 5 pages, 6 figures, compressed from first versio
Excitation Spectra of Structurally Dimerized and Spin-Peierls Chains in a Magnetic Field
The dynamical spin structure factor and the Raman response are calculated for
structurally dimerized and spin-Peierls chains in a magnetic field, using exact
diagonalization techniques. In both cases there is a spin liquid phase composed
of interacting singlet dimers at small fields h < h_c1, an incommensurate
regime (h_c1 < h < h_c2) in which the modulation of the triplet excitation
spectra adapts to the applied field, and a fully spin polarized phase above an
upper critical field h_c2. For structurally dimerized chains, the spin gap
closes in the incommensurate phase, whereas spin-Peierls chains remain gapped.
In the spin liquid regimes, the dominant feature of the triplet spectra is a
one-magnon bound state, separated from a continuum of states at higher
energies. There are also indications of a singlet bound state above the
one-magnon triplet.Comment: RevTex, 10 pages with 8 eps figure
Excitations in one-dimensional S=1/2 quantum antiferromagnets
The transition from dimerized to uniform phases is studied in terms of
spectral weights for spin chains using continuous unitary transformations
(CUTs). The spectral weights in the S=1 channel are computed perturbatively
around the limit of strong dimerization. We find that the spectral weight is
concentrated mainly in the subspaces with a small number of elementary triplets
(triplons), even for vanishing dimerization. So, besides spinons, triplons may
be used as elementary excitations in spin chains. We conclude that there is no
necessity to use fractional excitations in low-dimensional, undoped or doped
quantum antiferromagnets.Comment: 4 pages, 1 figure include
Phenomenological theory of spin excitations in La- and Y-based cuprates
Motivated by recent inelastic neutron scattering (INS) experiments on
La-based cuprates and based on the fermiology theories, we study the spin
susceptibility for La-based (e.g., LaSrCuO) and Y-based (e.g.,
YBaCuO) cuprates, respectively. The spin excitation in
YBaCuO is dominated by a sharp resonance peak at the frequency 40
meV in the superconducting state. Below and above the resonance frequency, the
incommensurate (IC) peaks develop and the intensity of the peaks decreases
dramatically. In the normal state, the resonant excitation does not occur and
the IC peaks are merged into commensurate ones. The spin excitation of
LaSrCuO is significantly different from that of Y-based ones,
namely, the resonance peak does not exist due to the decreasing of the
superconducting gap and the presence of the possible spin-stripe order. The
spectra are only enhanced at the expected resonance frequency (about 18 meV)
while it is still incommensurate. On the other hand, another frequency scale at
the frequency 55 meV is also revealed, namely the spectra are commensurate and
local maximum at this frequency. We elaborate all the results based on the
Fermi surface topology and the d-wave superconductivity, and suggest that the
spin-stripe order be also important in determining the spin excitation of
La-based cuprates. A coherent picture for the spin excitations is presented for
Y-based and La-based cuprates.Comment: 8 pages, 8 figure
Vertex corrections in the dynamic structure factor in spin ladders
We combine the results of perturbative continuous unitary transformations
with a mean-field calculation to determine the evolution of the single-mode,
i.e., one-triplon, contribution to the dynamic structure factor of a two-leg
ladder on increasing temperature from zero to a finite value. The
temperature dependence is induced by two effects: (i) no triplon can be excited
on a rung where a thermally activated triplon is present; (ii) conditional
excitation processes take place if a thermally activated triplon is present.
Both effects diminish the one-triplon spectral weight upon heating. It is shown
that the second effect is the dominant vertex correction in the calculation of
the dynamic structure factor. The matrix elements describing the conditional
triplon excitation in the two-leg Heisenberg ladder with additional four-spin
ring exchange are calculated perturbatively up to order 9. The calculated
results are compared to those of an inelastic neutron scattering experiment on
the cuprate-ladder compound LaSrCuO showing
convincing agreement for established values of the exchange constants.Comment: 14 pages, 15 figure
Incompatibility of modulated checkerboard patterns with the neutron scattering resonance peak in cuprate superconductors
Checkerboard patterns have been proposed in order to explain STM experiments
on the cuprates BSCCO and Na-CCOC. However the presence of these patterns has
not been confirmed by a bulk probe such as neutron scattering. In particular,
simple checkerboard patterns are inconsistent with neutron scattering data, in
that they have low energy incommsensurate (IC) spin peaks rotated 45 degrees
from the direction of the charge IC peaks. However, it is unclear whether other
checkerboard patterns can solve the problem. In this paper, we have studied
more complicated checkerboard patterns ("modulated checkerboards") by using
spin wave theory and analyzed noncollinear checkerboards as well. We find that
the high energy response of the modulated checkerboards is inconsistent with
neutron scattering results, since they fail to exhibit a resonance peak at
(pi,pi), which has recently been shown to be a universal feature of cuprate
superconductors. We further argue that the newly proposed noncollinear
checkerboard also lacks a resonance peak. We thus conclude that to date no
checkerboard pattern has been proposed which satisfies both the low energy
constraints and the high energy constraints imposed by the current body of
experimental data in cuprate superconductors.Comment: 5 pages, 5 figures, Fig.2 update
Efficient Coherent Control by Optimized Sequences of Pulses of Finite Duration
Reliable long-time storage of arbitrary quantum states is a key element for
quantum information processing. In order to dynamically decouple a spin or
quantum bit from a dephasing environment, we introduce an optimized sequence of
control pulses of finite durations \tau\pp and finite amplitudes. The
properties of this sequence of length stem from a mathematically rigorous
derivation. Corrections occur only in order and \tau\pp^3 without
mixed terms such as T^N\tau\pp or T^N\tau\pp^2. Based on existing
experiments, a concrete setup for the verification of the properties of the
advocated realistic sequence is proposed.Comment: 8 pages, 1 figur
- …
