108 research outputs found

    D-brane probes on G2 Orbifolds

    Get PDF
    We consider type IIB string theory on a seven dimensional orbifold with holonomy in G2. The motivation is to use D1-branes as probes of the geometry. The low energy theory on the D1-brane is a sigma-model with two real supercharges (N = (1,1) in two dimensional language). We study in detail the closed and open string sectors and propose a coupling of the twisted fields to the brane that modifies the vacuum moduli space so that the singularity at the origin is removed. Instead of coming from D-terms, which are not present here, the modification comes from a ``twisted'' mass term for the seven scalar multiplets on the brane. The proposed mechanism involves a generalization of the moment map.Comment: 16 pages; v2: References added; v3: Erroneous interpretation of twisted moduli corrected, acknowledgments adde

    Massive IIA supergravities

    Full text link
    We perform a systematic search for all possible massive deformations of IIA supergravity in ten dimensions. We show that there exist exactly two possibilities: Romans supergravity and Howe-Lambert-West supergravity. Along the way we give the full details of the ten-dimensional superspace formulation of the latter. The scalar superfield at canonical mass dimension zero (whose lowest component is the dilaton), present in both Romans and massless IIA supergravities, is not introduced from the outset but its existence follows from a certain integrability condition implied by the Bianchi identities. This fact leads to the possibility for a certain topological modification of massless IIA, reflecting an analogous situation in eleven dimensions.Comment: 35 pages; v2: typos corrected, added eq. (A4

    Generalized geometry, calibrations and supersymmetry in diverse dimensions

    Full text link
    We consider type II backgrounds of the form R^{1,d-1} x M^{10-d} for even d, preserving 2^{d/2} real supercharges; for d = 4, 6, 8 this is minimal supersymmetry in d dimensions, while for d = 2 it is N = (2,0) supersymmetry in two dimensions. For d = 6 we prove, by explicitly solving the Killing-spinor equations, that there is a one-to-one correspondence between background supersymmetry equations in pure-spinor form and D-brane generalized calibrations; this correspondence had been known to hold in the d = 4 case. Assuming the correspondence to hold for all d, we list the calibration forms for all admissible D-branes, as well as the background supersymmetry equations in pure-spinor form. We find a number of general features, including the following: The pattern of codimensions at which each calibration form appears exhibits a (mod 4) periodicity. In all cases one of the pure-spinor equations implies that the internal manifold is generalized Calabi-Yau. Our results are manifestly invariant under generalized mirror symmetry.Comment: 28 pages, 1 tabl

    Dirac Action on M5 and M2 Branes with Bulk Fluxes

    Full text link
    We derive an explicit form of the quadratic in fermions Dirac action on the M5 brane for an arbitrary on-shell background of 11D supergravity with non-vanishing fluxes and in presence of a chiral 2-form on M5. This action may be used to generalize the conditions for which the non-perturbative superpotential can be generated in M/string theory. We also derive the Dirac action with bulk fluxes on the M2 brane.Comment: 12 pages References adde

    New supersymmetric AdS4 type II vacua

    Full text link
    Building on our recent results on dynamic SU(3)xSU(3) structures we present a set of sufficient conditions for supersymmetric AdS4xM6 backgrounds of type IIA/IIB supergravity. These conditions ensure that the background solves, besides the supersymmetry equations, all the equations of motion of type II supergravity. The conditions state that the internal manifold is locally a codimension-one foliation such that the five dimensional leaves admit a Sasaki-Einstein structure. In type IIA the supersymmetry is N=2, and the total six-dimensional internal space is locally an S^2 bundle over a four-dimensional Kaehler-Einstein base; in IIB the internal space is the direct product of a circle and a five-dimensional squashed Sasaki-Einstein manifold. Given any five-dimensional Sasaki-Einstein manifold we construct the corresponding families of type IIA/IIB vacua. The precise profiles of all the fields are determined at the solution and depend on whether one is in IIA or in IIB. In particular the background does not contain any sources, all fluxes (including the Romans mass in IIA) are generally non-zero, and the dilaton and warp factor are non-constant.Comment: 19 pages; clarifications added, version to appear in JHE

    Supersymmetric AdS vacua and separation of scales

    Get PDF
    The moduli space of the supersymmetric massive IIA AdS4xS2(B4) vacua, where S2(B4) is a two-sphere bundle over a four-dimensional Kaehler-Einstein base B4, includes three independent parameters which can be thought of as corresponding to the sizes of AdS4, B4 and the S2 fiber. It might therefore be expected that these vacua do not suffer from the absence of scale separation. We show that the independence of the geometric moduli survives flux quantization. However, we uncover an attractor behavior whereby all sizes flow to equality in some neighborhood of spacetime independently of the initial conditions set by the parameters of the solution. This is further confirmed by the study of the ratio of internal to external scalar curvatures. We also show that the asymptotic Kaluza-Klein spectrum of a ten-dimensional massive scalar is governed by a scale of the order of the AdS4 radius. Furthermore we point out that the curvature ratio in supersymmetric IIA AdS4 vacua with rigid SU(3) structure is of order one, indicating the absence of scale separation in this large class of vacua.Comment: 21 pages, 2 figures; v2 typos correcte

    N=1,2 supersymmetric vacua of IIA supergravity and SU(2) structures

    Full text link
    We consider backgrounds of (massive) IIA supergravity of the form of a warped product M1,3×ωX6M_{1,3}\times_{\omega} X_6, where X6X_6 is a six-dimensional compact manifold and M1,3M_{1,3} is AdS4AdS_4 or a four-dimensional Minkowski space. We analyse conditions for N=1\mathcal{N}=1 and N=2\mathcal{N}=2 supersymmetry on manifolds of SU(2) structure. We prove the absence of solutions in certain cases.Comment: 24 pages; v2: reference adde

    11D supergravity at O(l3){\cal O}(l^3)

    Full text link
    We compute certain spinorial cohomology groups controlling possible supersymmetric deformations of eleven-dimensional supergravity up to order l3l^3 in the Planck length. At O(l){\cal O}(l) and O(l2){\cal O}(l^2) the spinorial cohomology groups are trivial and therefore the theory cannot be deformed supersymmetrically. At O(l3){\cal O}(l^3) the corresponding spinorial cohomology group is generated by a nontrivial element. On an eleven-dimensional manifold MM such that p1(M)0p_1(M)\neq 0, this element corresponds to a supersymmetric deformation of the theory, which can only be redefined away at the cost of shifting the quantization condition of the four-form field strength.Comment: 10 pages, 1 figure. v2: references adde

    A consistent truncation of IIB supergravity on manifolds admitting a Sasaki-Einstein structure

    Get PDF
    We present a consistent truncation of IIB supergravity on manifolds admitting a Sasaki-Einstein structure, which keeps the metric and five real scalar fields. This theory can be further truncated to a constrained one-parameter family that depends on only the metric and one scalar, as well as to a theory with a metric and three scalars. The reduced theory admits supersymmetric and non-supersymmetric AdS_5 and AdS_4 x R solutions. We analyze the spectrum around the AdS critical points and identify the dual operators.Comment: 21 pages; v2: references added and minor improvement
    corecore