218 research outputs found
Engineering of Cyclodextrin Product Specificity and pH Optima of the Thermostable Cyclodextrin Glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1
The product specificity and pH optimum of the thermostable cyclodextrin glycosyltransferase (CGTase) from Thermoanaerobacterium thermosulfurigenes EM1 was engineered using a combination of x-ray crystallography and site-directed mutagenesis. Previously, a crystal soaking experiment with the Bacillus circulans strain 251 β-CGTase had revealed a maltononaose inhibitor bound to the enzyme in an extended conformation. An identical experiment with the CGTase from T. thermosulfurigenes EM1 resulted in a 2.6-Å resolution x-ray structure of a complex with a maltohexaose inhibitor, bound in a different conformation. We hypothesize that the new maltohexaose conformation is related to the enhanced α-cyclodextrin production of the CGTase.
The detailed structural information subsequently allowed engineering of the cyclodextrin product specificity of the CGTase from T. thermosulfurigenes EM1 by site-directed mutagenesis. Mutation D371R was aimed at hindering the maltohexaose conformation and resulted in enhanced production of larger size cyclodextrins (β- and γ-CD). Mutation D197H was aimed at stabilization of the new maltohexaose conformation and resulted in increased production of α-CD.
Glu258 is involved in catalysis in CGTases as well as α-amylases, and is the proton donor in the first step of the cyclization reaction. Amino acids close to Glu258 in the CGTase from T. thermosulfurigenes EM1 were changed. Phe284 was replaced by Lys and Asn327 by Asp. The mutants showed changes in both the high and low pH slopes of the optimum curve for cyclization and hydrolysis when compared with the wild-type enzyme. This suggests that the pH optimum curve of CGTase is determined only by residue Glu258.
Substrate-Assisted Catalysis Unifies Two Families of Chitinolytic Enzymes
Hen egg-white lysozyme has long been the paradigm for enzymatic glycosyl hydrolysis with retention of configuration, with a protonated carboxylic acid and a deprotonated carboxylate participating in general acid-base catalysis. In marked contrast, the retaining chitin degrading enzymes from glycosyl hydrolase families 18 and 20 all have a single glutamic acid as the catalytic acid but lack a nucleophile on the enzyme. Both families have a catalytic (βα)8-barrel domain in common. X-ray structures of three different chitinolytic enzymes complexed with substrates or inhibitors identify a retaining mechanism involving a protein acid and the carbonyl oxygen atom of the substrate’s C2 N-acetyl group as the nucleophile. These studies unambiguously demonstrate the distortion of the sugar ring toward a sofa conformation, long postulated as being close to that of the transition state in glycosyl hydrolysis.
Superradiance Transition in Photosynthetic Light-Harvesting Complexes
We investigate the role of long-lasting quantum coherence in the efficiency
of energy transport at room temperature in Fenna-Matthews-Olson photosynthetic
complexes. The excitation energy transfer due to the coupling of the light
harvesting complex to the reaction center ("sink") is analyzed using an
effective non-Hermitian Hamiltonian. We show that, as the coupling to the
reaction center is varied, maximal efficiency in energy transport is achieved
in the vicinity of the superradiance transition, characterized by a segregation
of the imaginary parts of the eigenvalues of the effective non-Hermitian
Hamiltonian. Our results demonstrate that the presence of the sink (which
provides a quasi--continuum in the energy spectrum) is the dominant effect in
the energy transfer which takes place even in absence of a thermal bath. This
approach allows one to study the effects of finite temperature and the effects
of any coupling scheme to the reaction center. Moreover, taking into account a
realistic electric dipole interaction, we show that the optimal distance from
the reaction center to the Fenna-Matthews-Olson system occurs at the
superradiance transition, and we show that this is consistent with available
experimental data.Comment: 9 page
When I Was Young . .. - Perceptions of Past Winters by Elderly Residents of Northwest Wisconsin
Young people today often hear their eIders talk about the severe winters oftheir youth, noting colder, snowier times in the past. A survey of elderly residents of NW Wisconsin documents their perceptions of past winters. The results of this survey were then related to an nual and decade mean winter temperature and snowfal l data from the same region for the period, 1920 to 1996. It appears that memories of the most severe winter weather are connected with childhood. A majority of respondents chose the 1930s as being the coldest decade in memory. In reality, it was not. Only one subject chose the 1970s as being the coldest decade, which it was. Subjects tended to use one severe winter as their reference for the severity of an entire decade. For example, over 35 percent of subjects referred to the 1950s as being the snowiest when in fact the \u2750s produced the least snowfall overall. However, the winter of 1950-51 was exceptionally snowy across much ofthe upper Midwest. Most elderly people associated the most severe winters of their lives with the years in which they walked to school. In their comments the need to express the hardships of their youth is evident. Improved technology minimizes the perceived severity of recent winters. As technology advances, memories do not
Suppression of quantum oscillations and the dependence on site energies in electronic excitation transfer in the Fenna-Matthews-Olson trimer
Energy transfer in the photosynthetic complex of the Green Sulfur Bacteria
known as the Fenna-Matthews-Olson (FMO) complex is studied theoretically taking
all three subunits (monomers) of the FMO trimer and the recently found eighth
bacteriochlorophyll (BChl) molecule into account. We find that in all
considered cases there is very little transfer between the monomers. Since it
is believed that the eighth BChl is located near the main light harvesting
antenna we look at the differences in transfer between the situation when BChl
8 is initially excited and the usually considered case when BChl 1 or 6 is
initially excited. We find strong differences in the transfer dynamics, both
qualitatively and quantitatively. When the excited state dynamics is
initialized at site eight of the FMO complex, we see a slow exponential-like
decay of the excitation. This is in contrast to the oscillations and a
relatively fast transfer that occurs when only seven sites or initialization at
sites 1 and 6 is considered. Additionally we show that differences in the
values of the electronic transition energies found in the literature lead to a
large difference in the transfer dynamics
An efficient general-purpose least-squares refinement program for macromolecular structures
Revisiting the optical properties of the FMO protein
We review the optical properties of the FMO complex as found by spectroscopic studies of the Qy band over the last two decades. This article emphasizes the different methods used, both experimental and theoretical, to elucidate the excitonic structure and dynamics of this pigment–protein complex
Structural, spectroscopic and catalytic activity studies on glutathione reductase reconstituted with FAD analogues
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66378/1/j.1432-1033.1991.tb16100.x.pd
Origin of Long Lived Coherences in Light-Harvesting Complexes
A vibronic exciton model is developed to investigate the origin of long lived
coherences in light-harvesting complexes. Using experimentally determined
parameters and uncorrelated site energy fluctuations, the model predicts
oscillations in the nonlinear spectra of the Fenna-Matthews-Olson (FMO) complex
with a dephasing time of 1.3 ps at 77 K. These oscillations correspond to the
coherent superposition of vibronic exciton states with dominant contributions
from vibrational excitations on the same pigment. Purely electronic coherences
are found to decay on a 200 fs timescale.Comment: 4 pages, 2 figure
The chlorosome: a prototype for efficient light harvesting in photosynthesis
Three phyla of bacteria include phototrophs that contain unique antenna systems, chlorosomes, as the principal light-harvesting apparatus. Chlorosomes are the largest known supramolecular antenna systems and contain hundreds of thousands of BChl c/d/e molecules enclosed by a single membrane leaflet and a baseplate. The BChl pigments are organized via self-assembly and do not require proteins to provide a scaffold for efficient light harvesting. Their excitation energy flows via a small protein, CsmA embedded in the baseplate to the photosynthetic reaction centres. Chlorosomes allow for photosynthesis at very low light intensities by ultra-rapid transfer of excitations to reaction centres and enable organisms with chlorosomes to live at extraordinarily low light intensities under which no other phototrophic organisms can grow. This article reviews several aspects of chlorosomes: the supramolecular and molecular organizations and the light-harvesting and spectroscopic properties. In addition, it provides some novel information about the organization of the baseplate
- …
