747 research outputs found

    Comment on "Acoustics of tachyon Fermi gas" [E. Trojan and G.V. Vlasov, arXiv:1103.2276 (hep-ph)]

    Full text link
    In contrast to Trojan and Vlasov [arXiv:1103.2276 (hep-ph)], it is found that an ideal Fermi gas of tachyons has a subluminous velocity of sound for any particle density and, therefore, the causality condition for a tachyon gas holds always true. Also, an ideal Fermi gas of tachyons never possesses an exotic equation of state with the pressure exceeding the energy density.Comment: 1 page + Ref

    Acoustics of tachyon Fermi gas

    Full text link
    We consider a Fermi gas of free tachyons as a continuous medium and find whether it satisfies the causality condition. There is no stable tachyon matter with the particle density below critical value nTn_T and the Fermi momentum kF<32mk_F<\sqrt{\frac 32}m that depends on the tachyon mass mm. The pressure PP and energy density EE cannot be arbitrary small, but the situation P>EP>E is not forbidden. Existence of shock waves in tachyon gas is also discussed. At low density nT<n<3.45nTn_T<n<3.45n_T the tachyon matter remains stable but no shock wave do survive.Comment: 14 pages, 2 figures (color

    Shock waves in superconducting cosmic strings: growth of current

    Full text link
    Intrinsic equations of motion of superconducting cosmic string may admit solutions in the shock-wave form that implies discontinuity of the current term \chi. The hypersurface of discontinuity propagates at finite velocity determined by finite increment \Delta \chi =\chi_+ -\chi_-. The current increases \chi_+>\chi_- in stable shocks but transition between spacelike (\chi >0) and timelike (\chi<0) currents is impossible.Comment: 13 pages, 3 figure

    A Radio Determination of the Time of the New Moon

    Full text link
    The detection of the New Moon at sunset is of importance to communities based on the lunar calendar. This is traditionally undertaken with visual observations. We propose a radio method which allows a higher visibility of the Moon relative to the Sun and consequently gives us the ability to detect the Moon much closer to the Sun than is the case of visual observation. We first compare the relative brightness of the Moon and Sun over a range of possible frequencies and find the range 5--100\,GHz to be suitable. The next consideration is the atmospheric absorption/emission due to water vapour and oxygen as a function of frequency. This is particularly important since the relevant observations are near the horizon. We show that a frequency of 10\sim 10 GHz is optimal for this programme. We have designed and constructed a telescope with a FWHM resolution of 0 ⁣ ⁣^\circ{}\!\!.6 and low sidelobes to demonstrate the potential of this approach. At the time of the 21 May 2012 New Moon the Sun/Moon brightness temperature ratio was 72.7±2.272.7 \pm 2.2 in agreement with predictions from the literature when combined with the observed sunspot numbers for the day. The Moon would have been readily detectable at 2\sim 2^{\circ} from the Sun. Our observations at 16\,hr\,36\,min UT indicated that the Moon would have been at closest approach to the Sun 16\,hr\,25\,min earlier; this was the annular solar eclipse of 00\,hr\,00\,min\,UT on 21 May 2012.Comment: 11 pages, 15 figures, accepted for publication in MNRA

    Exponential and power law distribution of mass clusters in a (magnetic-like) deposition model of elongated grains in 2D piles

    Full text link
    A generalized so called magnetically controlled ballistic rain-like deposition (MBD) model of granular piles has been numerically investigated in 2D. The grains are taken to be elongated disks whence characterized by a two-state scalar degree of freedom, called ''nip'', their interaction being described through a Hamiltonian. Results are discussed in order to search for the effect of nip flip (or grain rotation from vertical to horizontal and conversely) probability in building a granular pile. The characteristics of creation of + (or -) nip's clusters and clusters of holes (missing nips) are analyzed. Two different cluster-mass regimes have been identified, through the cluster-mass distribution function which can be exponential or have a power law form depending on whether the nip flip (or grain rotation) probability is large or small. Analytical forms of the exponent are empirically found in terms of the Hamiltonian parameters.Comment: submitted to Int.J. Mod. Phys. C; 16 figures; 79 reference

    Adding cetuximab to capecitabine plus oxaliplatin (XELOX) in first-line treatment of metastatic colorectal cancer: a randomized phase II trial of the Swiss Group for Clinical Cancer Research SAKK

    Get PDF
    Background: To determine the activity and tolerability of adding cetuximab to the oxaliplatin and capecitabine (XELOX) combination in first-line treatment of metastatic colorectal cancer (MCC). Patients and methods: In a multicenter two-arm phase II trial, patients were randomized to receive oxaliplatin 130 mg/m2 on day 1 and capecitabine 1000 mg/m2 twice daily on days 1-14 every 3 weeks alone or in combination with standard dose cetuximab. Treatment was limited to a maximum of six cycles. Results: Seventy-four patients with good performance status entered the trial. Objective partial response rates after external review and radiological confirmation were 14% and 41% in the XELOX and in the XELOX + Cetuximab arm, respectively. Stable disease has been observed in 62% and 35% of the patients, with 76% disease control in both arms. Cetuximab led to skin rash in 65% of the patients. The median overall survival was 16.5 months for arm A and 20.5 months for arm B. The median time to progression was 5.8 months for arm A and 7.2 months for arm B. Conclusion: Differences in response rates between the treatment arms indicate that cetuximab may improve outcome with XELOX. The correct place of the cetuximab, oxaliplatin and fluoropyrimidine combinations in first-line treatment of MCC has to be assessed in phase III trial

    KONDENSIERTE PHOSPHATE ALS SPEZIELLE ANORGANISCHE PIGMENTE

    Get PDF
    Synthesis and examination of special pigments prepared by reactions of condensed phosphates with bivalent metals. Application of different analytical methods to their examination. The thermal methods give the most serviceable informations concerning reaction mechanism and products
    corecore