224 research outputs found

    Inferring connectivity range in submerged aquatic populations (<i>Ruppia</i> L.) along European coastal lagoons from genetic imprint and simulated dispersal trajectories

    Get PDF
    Coastal salt- and brackish water lagoons are unique shallow habitats characterized by beds of submerged seagrasses and salt-tolerant Ruppia species. Established long-term and large-scale patterns of connectivity in lagoon systems can be strongly determined by patterns of nearshore and coastal currents next to local bird-mediated seed dispersal. Despite the importance of dispersal in landscape ecology, characterizing patterns of connectivity remains challenging in aquatic systems. Here, we aimed at inferring connectivity distances of Ruppia cirrhosa along European coastal lagoons using a population genetic imprint and modeled dispersal trajectories using an eddy-resolving numerical ocean model that includes tidal forcing. We investigated 1,303 individuals of 46 populations alongside subbasins of the Mediterranean (Balearic, Tyrrhenian, Ionian) and the Atlantic to Baltic Sea coastline over maximum distances of 563–2,684 km. Ten microsatellite loci under an autotetraploid condition revealed a mixed sexual and vegetative reproduction mode. A pairwise FST permutation test of populations revealed high levels of historical connectivity only for distance classes up to 104–280 km. Since full range analysis was not fully explanatory, we assessed connectivity in more detail at coastline and subbasin level using four approaches. Firstly, a regression over restricted geographical distances (300 km) was done though remained comparable to full range analysis. Secondly, piecewise linear regression analyses yielded much better explained variance but the obtained breakpoints were shifted toward greater geographical distances due to a flat slope of regression lines that most likely reflect genetic drift. Thirdly, classification and regression tree analyses revealed threshold values of 47–179 km. Finally, simulated ocean surface dispersal trajectories for propagules with floating periods of 1–4 weeks, were congruent with inferred distances, a spatial Bayesian admixed gene pool clustering and a barrier detection method. A kinship based spatial autocorrelation showed a contemporary within-lagoon connectivity up to 20 km. Our findings indicate that strong differentiation or admixtures shaped historical connectivity and that a pre- and post LGM genetic imprint of R. cirrhosa along the European coasts was maintained from their occurrence in primary habitats. Additionally, this study demonstrates the importance of unraveling thresholds of genetic breaks in combination with ocean dispersal modeling to infer patterns of connectivity

    A polymorphism in the enhancer region of the thymidylate synthase promoter influences the survival of colorectal cancer patients treated with 5-fluorouracil

    Get PDF
    High levels of thymidylate synthase (TS) expression have been associated with poor survival of colorectal cancer (CRC) patients to 5-fluorouracil (5-FU)-based chemotherapy. Recent evidence suggests that a polymorphism within the enhancer region of the TS gene promoter can influence TS expression, with the triple repeat homozygote (3R/3R) being associated with significantly higher tumour TS levels than either the double repeat homozygote (2R/2R) or heterozygotes (2R/3R). In the present study we investigated whether TS genotype was associated with the degree of survival benefit from chemotherapy in 221 Dukes' C stage CRC patients. Patients with the 3R/3R polymorphism (n = 58, 26%) showed no significant long-term survival benefit from chemotherapy (RR = 0.62, 95% CI: 0.30–1.25, P = 0.18), whereas those with the 2R/2R or 2R/3R genotype (n = 163, 74%) showed significant gains in survival from this treatment (RR = 0.52, 95% CI: 0.52–0.82, P = 0.005). These results demonstrate that a polymorphism within the TS gene, probably through its effect on TS expression levels, can influence the survival benefit obtained by CRC patients from 5-FU-based chemotherapy. Β© 2001 Cancer Research Campaignhttp://www.bjcancer.co

    The impact of customer-specific marketing expenses on customer retention and customer profitability

    Get PDF
    We study the effects of customer-specific marketing expenses on customer retention and customer profitability in a business-to-business setting. Using data from a company providing hygiene services, we look at the impact of a hitherto unstudied type of expense targeted at individual customer relationships: the offering of free equipment to customers. The data allow tracking the activities performed in more than 4,500 customer relationships over a period of 4 years. Retention rates are higher for customers targeted with free equipment, but this effect results from an interaction with customer size. First-order dynamic panel data analyses show that the impact of targeted marketing expenses on customer dollar profit is positive for large customers, but there is no effect for smaller customers. Thus, targeted marketing expenses seem to be a tool for relationship maintenance rather than customer development: they help in retaining large customers that generate more profit, but they do not seem to work in developing new customers into larger, more profitable ones

    Changes in the status of p53 affect drug sensitivity to thymidylate synthase (TS) inhibitors by altering TS levels

    Get PDF
    Colorectal cancer (CRC) resistance to fluoropyrimidines and other inhibitors of thymidylate synthase (TS) is a serious clinical problem often associated with increased intracellular levels of TS. Since the tumour suppressor gene p53, which is mutated in 50% of CRC, regulates the expression of several genes, it may modulate TS activity, and changes in the status of p53 might be responsible for chemoresistance. Therefore, this study was aimed to investigate TS levels and sensitivity to TS inhibitors in wild-type (wt) and mutant (mt) p53 CRC cells, Lovo and WiDr, respectively, transfected with mt and wt p53. Lovo 175X2 cells (transfected with mt p53) were more resistant to 5-fluorouracil (5-FU; 2-fold), nolatrexed (3-fold), raltitrexed (3-fold) and pemetrexed (10-fold) in comparison with the wt p53 parental cells Lovo 92. Resistance was associated with an increase in TS protein expression and catalytic activity, which might be caused by the loss of the inhibitory effect on the activity of TS promoter or by the lack of TS mRNA degradation, as suggested by the reversal of TS expression to the levels of Lovo 92 cells by adding actinomycin. In contrast, Lovo li cells, characterized by functionally inactive p53, were 3-13-fold more sensitive to nolatrexed, raltitrexed and pemetrexed, and had a lower TS mRNA, protein expression and catalytic activity than Lovo 92. However, MDM-2 expression was significantly higher in Lovo li, while no significant differences were observed in Lovo 175X2 cells with respect to Lovo 92. Finally, mt p53 WiDr transfected with wt p53 were not significantly different from mt p53 WiDr cells with respect to sensitivity to TS inhibitors or TS levels. Altogether, these results indicate that changes in the status of p53, can differently alter sensitivity to TS inhibitors by affecting TS levels, depending on activity or cell line, and might explain the lack of clear correlation between mutations in p53 and clinical outcome after chemotherapy with TS inhibitors

    Role of platelet-derived endothelial cell growth factor/thymidine phosphorylase in fluoropyrimidine sensitivity

    Get PDF
    Platelet-derived endothelial cell growth factor (PD-ECGF)/thymidine phosphorylase (TP) catalyses the reversible phosphorolysis of thymidine to thymine and 2-deoxyribose-1-phosphate and is involved in the metabolism of fluoropyrimidines. It can also activate 5'-deoxyfluorouridine (5'DFUR) and possibly 5-fluorouracil (5FU) and Ftorafur (Ft), but inactivates trifluorothymidine (TFT). We studied the contribution of TP activity to the sensitivity for these fluoropyrimidines by modulating its activity and/or expression level in colon and lung cancer cells using a specific inhibitor of TIP (TPI) or by overproduction of TIP via stable transfection of human TP. Expression was analysed using competitive template-RT-PCR (CT-RT-PCR), Western blot and an activity assay. TP activity ranged from nondetectable to 70678 pmol h(-1) 10(-6) cells, in Colo320 and a TP overexpressing clone Colo320TPI, respectively. We found a good correlation between TIP activity and mRNA expression (r = 0.964, P <0.01) in our cell panel. To determine the role of TIP in the sensitivity to 5FU, 5'DFUR, Ft and TFT, cells were cultured with the various fluoropyrimidines with or without TPI and differences in IC50's were established. TPI modified 5'DFUR, increasing the IC50's 2.5- to 1396-fold in WiDR and Colo320TPI, respectively. 5-Fluorouracil could be modified by inhibiting TP but to a lesser extent than 5'DFUR: IC50's increased 1.9- to 14.7-fold for WiDR and Colo320TPI, respectively. There was no effect on TFT or Ft. There appears to be a threshold level of TP activity to influence the 5'DFUR and 5FU sensitivity, which is higher for 5FU. Even high levels of TP overexpression only had a moderate effect on 5FU sensitivity. (C) 2003 Cancer Research UK

    Selective Induction of Cell Death in Melanoma Cell Lines through Targeting of Mcl-1 and A1

    Get PDF
    Melanoma is an often fatal form of skin cancer which is remarkably resistant against radio- and chemotherapy. Even new strategies that target RAS/RAF signaling and display unprecedented efficacy are characterized by resistance mechanisms. The targeting of survival pathways would be an attractive alternative strategy, if tumor-specific cell death can be achieved. Bcl-2 proteins play a central role in regulating survival of tumor cells. In this study, we systematically investigated the relevance of antiapoptotic Bcl-2 proteins, i.e., Bcl-2, Bcl-xL, Bcl-w, Mcl-1, and A1, in melanoma cell lines and non-malignant cells using RNAi. We found that melanoma cells required the presence of specific antiapoptotic Bcl-2 proteins: Inhibition of Mcl-1 and A1 strongly induced cell death in some melanoma cell lines, whereas non-malignant cells, i.e., primary human fibroblasts or keratinocytes were not affected. This specific sensitivity of melanoma cells was further enhanced by the combined inhibition of Mcl-1 and A1 and resulted in 60% to 80% cell death in all melanoma cell lines tested. This treatment was successfully combined with chemotherapy, which killed a substantial proportion of cells that survived Mcl-1 and A1 inhibition. Together, these results identify antiapoptotic proteins on which specifically melanoma cells rely on and, thus, provide a basis for the development of new Bcl-2 protein-targeting therapies
    • …
    corecore