31 research outputs found

    Traitement de lixiviats stabilisés de décharge par des membranes de nanofiltration

    Get PDF
    Le terme "lixiviat" ou "jus de décharge", désigne l'eau qui a percolé à travers les déchets en se chargeant de polluants. Ces effluents pollués doivent être traités.En raison des exigences croissantes des normes de rejet et de la stabilisation des lixiviats au cours du temps, de nouvelles techniques ont fait leur apparition dans ce domaine. La technologie de l'osmose inverse s'est développée dans de nombreux pays européens. Cependant cette technique sélective et coûteuse, se justifie seulement quand les normes sont drastiques. C'est pourquoi la nanofiltration pourrait constituer une solution intermédiaire.L'objectif de ce travail est de contribuer à mieux maîtriser cette technique pour l'élimination de la Demande Chimique en Oxygène (DCO) récalcitrante, subsistant après les traitements biologiques classiques.Nous avons évalué les performances de trois membranes (organiques et minérales) pour l'abaissement de la charge organique, en fonction des conditions hydrodynamiques (vitesse et pression).Chacune de ces membranes possède un comportement spécifique vis à vis de ces lixiviats stabilisés (adsorption, polarisation de concentration, obstruction des pores).L'influence d'une coagulation préalable sur les performances d'épuration a également été examinée pour l'une des membranes.Cette étude constitue une étape préliminaire au dimensionnement d'une installation.Landfill leachate is the name given to water that has passed through solid waste and contains organic and mineral contaminants. Therefore this effluent must be treated before discharge to the environment. Because of new norms and the stabilization of leachates with time, new treatment methods have been designed. Thus, reverse osmosis is used in many European countries. But the use of reverse osmosis is only justified when norms are severe, because the treatment is highly selective (salt rejection >99%) and very expensive. In other cases, nanofiltration may be an interesting alternative.The purpose of the present work is to propose a process for recalcitrant organic matter in order to optimize the technique. Thus, three membranes (organic and mineral) have been used to evaluate their ability to decrease the Chemical Oxygen Demand (COD) of the leachate. This study helps to determine the size of the device. First, physical parameters were investigated. Each time, the hydraulic regime was turbulent (Re > 2500). Higher permeation fluxes were obtained with organic membranes than with the mineral one (80 L·h-1·m-2 compared to 25 L·h-1·m-2) under the same experimental conditions (10 bar and 3.4 m·s-1). Tangential flow rates higher than 2.5 m·s-1 do not influence COD retention; at lower flow rates polarisation concentration may occur. The removal of COD is achieved in the three cases. At 10 bar an acceptable value of less than 120 mg O2·L-1 (norm) is obtained. The inorganic membrane (Tech-Sep) gives the best results (COD rejection: 70 % at 10 bar).Membranes behave differently toward landfill. The organic membrane MP 20 (Weizmann membrane, cut-off 450 Dalton (Da), polyacrylonitrile) shows low adsorption with landfill leachate. The organic membrane MP 31 (Weizmann membrane, cut off 450 Da, polysulfone) gave a high COD retention ratio; the values for irreversible fouling and static adsorption are of the same order ofmagnitude; a strong membrane-foulant interaction must occur, which improves membrane selectivity. The mineral membrane N01A (Tech-Sep membrane, cut off 1000 Da, zirconium oxide), like MP-31, gives high static adsorption with leachate and irreversible fouling as well. The latter phenomenon can be explained by the obstruction of membrane pores by leachate particles, the size of which is near the membrane cut-off point. Fouling and static adsorption contribute to the increase in the membrane rejection rate. We studied coagulation as a pretreatment to improve performances of the N01A membrane. Experiments have been carried out with Jar-Test and FeCl3-like coagulants. The optimal amount of coagulant was 1.4 g Fe·L-1; 60% COD reduction was achieved. The results obtained with the N01A membrane are improved: reduction of COD rises from 78% to 92 %, concentration polarisation is lower, and therefore the flux increases up to 53 L·h-1·m-2. This value still remains lower than the organic membrane fluxes (respectively 80 L·h-1·m-2 for organic membranes and 25 L·h-1·m-2 for N01A). However, coagulation may not be the appropriate pretreatment because the fouling index of the supernatant after coagulation was similar to that of the raw leachate. Permeability measurements after treatment show that internal fouling is still important (25%). In fact, coagulation does not remove molecules with molecular weights around 500 Daltons, and consequently these particles still obstruct the membrane pores. The phenomenon limits the performance (flux) of this membrane

    Réduction de la DCO dure des lisiers de porc et lixiviats par nanofiltration

    Get PDF
    Malgré un traitement biologique préalable, les lisiers et les lixiviats de décharge ont en commun de conserver une Demande Chimique en Oxygène (DCO) résiduelle supérieure à 500 mg O2.l-1 : valeur 4 à 5 fois trop élevée pour un rejet direct dans le milieu naturel. La nanofiltration pourrait constituer une solution comme traitement de finition. Dans le cadre de cette étude expérimentale, deux membranes de nanofiltration sont mises en œuvre à l'échelle pilote afin de comparer leur efficacité pour réduire la DCO non biodégradable des deux effluents précités. Dans un premier temps, l'étude menée à concentration constante, montre que les performances (flux de perméation et DCO dans le perméat) dépendent principalement du couple membrane - effluent. Dans le cas du lisier, la couche de colmatants formée à la surface de la membrane a un caractère compressible et peu structuré ce qui entraîne une plus grande sensibilité aux variations de conditions hydrodynamiques. Dans le cas des lixiviats, la couche formée est moins dépendante des conditions opératoires. Après avoir sélectionné les meilleures conditions opératoires pour réduire la DCO des deux effluents étudiés, les essais de nanofiltration sont ensuite menés en mode "concentration" en fixant la pression à 15 bar et la vitesse de recirculation à 1,5 m.s-1. L'obtention d'un facteur de réduction volumique de 4 entraîne, d'une part, une diminution plus accentuée des flux de perméation dans le cas du lisier que dans celui du lixiviat et, d'autre part, une augmentation plus importante de la DCO du perméat pour le lisier. La valeur de la DCO devient alors supérieure, en fin de concentration, à celle requise pour un rejet en milieu naturel (120 mg O2.l-1).Pig manure and landfill leachate cannot be treated only by conventional biological treatment because a "refractory" COD persists, superior to 500 mg O2.l-1 : four times too high for a direct discharge in the environment. Nanofiltration, an intermediate process between reverse osmosis and ultrafiltration, may be an interesting alternative as a final treatment. In nanofiltration, lower pressure can be used and fluxes are higher than for reverse osmosis. The present study compared the treatability of pig manure and landfill leachate after biological treatment using a pilot-scale nanofiltration plant. Performances were evaluated in terms of permeate COD and permeate flux versus operating conditions (applied pressure, crossflow velocity and recovery rate). Two tubular organic nanofiltration membranes with 450 diameter cut-offs were used for pilot-scale testing: MPT-20 (polyacrylonitrile) and MPT-31 (polysulfone). Preliminary experiments carried out at constant concentrations show that performance (permeation flux and permeate COD) depends mainly on the nanofiltration membrane/effluent coupling. Permeate fluxes obtained with the MPT-20 membrane were higher than those obtained with the MPT-31. The increased crossflow velocity produced a particularly marked flux increase for pig manure. Moreover, the flux obtained with pig manure decreased at pressures superior to 15 bars whereas for the landfill leachate it became constant regardless of the pressure applied. COD retention was better in the case of pig manure and increased with pressure. On the other hand, high crossflow velocity helped reduce the COD retention, particularly for pig manure. The difference stems mainly from the foulant layer on the membrane surface. This layer is compressible and not organised; in the case of pig manure, it may explain the influence of hydrodynamic parameters: crossflow velocity favours the back migration of potential foulant such as colloids from the membrane surface to the bulk liquid phase. This may explain an increased mass transfer and consequent reduction of COD retention at high tangential velocities. Moreover, higher pressure generates a dense layer, which leads to a reduction of mass transfer. The influence of operating conditions was less important for the leachate, as the foulant layer may be more organised and have better cohesion.In the second part of this study, the nanofiltration pilot plant was operated in concentration mode in order to evaluate the influence of recovery rate on flux and retention. Since COD retention is better with the MPT-31 membrane, the latter was used for concentration experiments. The applied pressure was fixed at 15 bar and crossflow velocity at 1.5 m.s-1. Both effluents were concentrated with a volume reduction factor of 4. However this reduction of retentate volume led to both a drop in permeation flux and a rise of permeate COD, to a value above to the environmental norm of 120 mg O2.l-1

    Overview of biologically digested leachate treatment using adsorption

    Get PDF
    Biological process is effective in treating most biodegradable organic matter present in leachate; however, a significant amount of ammonia, metals and refractory organic compounds may still remain in this biologically digested leachate. This effluent cannot be released to receiving bodies until the discharge limit is met. Several physical/chemical processes have been practiced as post-treatment to remove the remaining pollutants including coagulation–flocculation, oxidation and adsorption. Adsorption is often applied in leachate treatment as it enhances removal of refractory organic compounds. This chapter will focus on works related to adsorption as one of the commonly used methods to treat biologically digested leachate further down to acceptable discharge limit

    Overview of biologically digested leachate treatment using adsorption

    Get PDF
    Biological process is effective in treating most biodegradable organic matter present in leachate; however, a significant amount of ammonia, metals and refractory organic compounds may still remain in this biologically digested leachate. This effluent cannot be released to receiving bodies until the discharge limit is met. Several physical/chemical processes have been practiced as post-treatment to remove the remaining pollutants including coagulation–flocculation, oxidation and adsorption. Adsorption is often applied in leachate treatment as it enhances removal of refractory organic compounds. This chapter will focus on works related to adsorption as one of the commonly used methods to treat biologically digested leachate further down to acceptable discharge limit

    Recovery of lignin and lignans enriched fractions from thermomechanical pulp mill process water through membrane separation technology: Pilot-plant study and techno-economic assessment

    Get PDF
    International audienceMembrane process is a viable option for valuable compounds such as lignin and lignans recovery in aqueous discharges of thermomechanical pulp industries. Recovery of lignin and lignans with continuous mode ultrafiltration/nanofiltration installation has not been studied in detail previously. After flotation used to remove lipophilic matter of pulp mill effluent, the three steps membrane process was composed of a clarification step by a 150 kDa ultrafiltration used to remove suspended matter, followed by two nanofiltrations of 1 kDa and 300 Da to respectively retain lignin and lignans. A techno-economic evaluation of this process has been performed. The process with a plant capacity of 60 m(3) h(-1) was able to produce 12 tons of lignin and 825 kg of lignans per month. The influence of plant capacity between 0.1 and 60 m(3) h(-1) on extracts production cost allows determining a production cost equal or below 10 V.kg(-1) as plant capacity reached 10 m(3) h(-1). Valorization of lignin and lignans as parts of the formulas of high added value products could allow thermomechanical plants to head towards biorefinery and cleaner production concepts. Furthemore, the 300 Da permeate possessed the required characteristics to be re used and save fresh water utilization. (C) 2019 Elsevier Ltd. All rights reserved

    Microfiltration of pretreated sanitary landfill leachate

    Get PDF
    A laboratory study using a bench scale model of two units operation involving coagulation process with Moringa oleifera seeds extract as a coagulant and filtration process using hollow fibre microfiltration membrane, was adopted to treat Air Hitam Sanitary Landfill leachate in Puchong, Malaysia. The performance of the microfiltration membrane in pretreated sanitary landfill leachate treatment was investigated through a continuous process. The leachate sample was passed through conventional coagulation process before being filtered through a hollow fibre microfiltration membrane of 0.1 µm surface pores. The hollow fibre microfiltration membrane decreased the turbidity, colour, total suspended solids, total dissolved solids and volatile suspended solids in the leachate by 98.30, 90.30, 99.63, 14.71 and 20%, respectively. The results showed that microfiltration is capable of removing high percentage of solids from leachate and might be considered as a polishing stage after on-site biological treatment for sanitary landfill leachate

    Fractionation of polyphenols from thermomechanical pulp mill process water by flotation and membrane integrated process

    Get PDF
    International audienceFractionation of phenolic compounds in thermomechanical pulp mills was performed with a coupling of a prior treatment realized by flotation and a ceramic membrane process. Two lines of membranes filtration were tested. After a common 150 kDa clarification, 1 kDa filtration was performed with or without previous 5 kDa filtration. Flotation was shown to be inevitable to retain lipophilic compounds which cause severe membrane fouling. 150 kDa permeate flux was 20% higher when process water was firstly floated and was around 260 L h−1 m−2. 1 kDa membrane was fouled with 31% of irreversible fouling without previous 5 kDa filtration and phenolic compounds purity reached only 26% in this 1 kDa permeate. Phenolic compounds as lignin-like substances which might be attached to hemicelluloses were recovered in 5 kDa retentate. Retentate of 1 kDa might contain a major fraction of lignin derivatives with molecular weights around 1 kDa free or linked with phenolic acids. Permeate of 1 kDa contained 14% of phenolic compounds such as lignans and free phenolic acids purified at 50%
    corecore