1,088 research outputs found
Valence Force Model for Phonons in Graphene and Carbon Nanotubes
Many calculations require a simple classical model for the interactions
between sp^2-bonded carbon atoms, as in graphene or carbon nanotubes. Here we
present a new valence force model to describe these interactions. The
calculated phonon spectrum of graphene and the nanotube breathing-mode energy
agree well with experimental measurements and with ab initio calculations. The
model does not assume an underlying lattice, so it can also be directly applied
to distorted structures. The characteristics and limitations of the model are
discussed.Comment: 4 pages, 3 figure
Large Scale Electronic Structure Calculations with Multigrid Acceleration
We have developed a set of techniques for performing large scale ab initio
calculations using multigrid accelerations and a real-space grid as a basis.
The multigrid methods permit efficient calculations on ill-conditioned systems
with long length scales or high energy cutoffs. The technique has been applied
to systems containing up to 100 atoms, including a highly elongated diamond
cell, an isolated C molecule, and a 32-atom cell of GaN with the Ga
d-states in valence. The method is well suited for implementation on both
vector and massively parallel architectures.Comment: 4 pages, 1 postscript figur
Fermi-level alignment at metal-carbon nanotube interfaces: application to scanning tunneling spectroscopy
At any metal-carbon nanotube interface there is charge transfer and the
induced interfacial field determines the position of the carbon nanotube band
structure relative to the metal Fermi-level. In the case of a single-wall
carbon nanotube (SWNT) supported on a gold substrate, we show that the charge
transfers induce a local electrostatic potential perturbation which gives rise
to the observed Fermi-level shift in scanning tunneling spectroscopy (STS)
measurements. We also discuss the relevance of this study to recent experiments
on carbon nanotube transistors and argue that the Fermi-level alignment will be
different for carbon nanotube transistors with low resistance and high
resistance contacts.Comment: 4 pages, 3 ps figures, minor corrections, accepted by Phys. Rev. Let
A Multiscale Approach to Determination of Thermal Properties and Changes in Free Energy: Application to Reconstruction of Dislocations in Silicon
We introduce an approach to exploit the existence of multiple levels of
description of a physical system to radically accelerate the determination of
thermodynamic quantities. We first give a proof of principle of the method
using two empirical interatomic potential functions. We then apply the
technique to feed information from an interatomic potential into otherwise
inaccessible quantum mechanical tight-binding calculations of the
reconstruction of partial dislocations in silicon at finite temperature. With
this approach, comprehensive ab initio studies at finite temperature will now
be possible.Comment: 5 pages, 3 figure
Novel GaAs surface phases via direct control of chemical potential
Using in situ surface electron microscopy, we show that the surface chemical potential of GaAs (001), and hence the surface phase, can be systematically controlled by varying temperature with liquid Ga droplets present as Ga reservoirs. With decreasing temperature, the surface approaches equilibrium with liquid Ga. This provides access to a regime where we find phases ultrarich in Ga, extending the range of surface phases available in this technologically important system. The same behavior is expected to occur for similar binary or multicomponent semiconductors such as InGaAs
Scaling of excitons in carbon nanotubes
Light emission from carbon nanotubes is expected to be dominated by excitonic
recombination. Here we calculate the properties of excitons in nanotubes
embedded in a dielectric, for a wide range of tube radii and dielectric
environments. We find that simple scaling relationships give a good description
of the binding energy, exciton size, and oscillator strength.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Let
Electronic properties of metal induced gap states at insulator/metal interfaces -- dependence on the alkali halide and the possibility of excitonic mechanism of superconductivity
Motivated from the experimental observation of metal induced gap states
(MIGS) at insulator/metal interfaces by Kiguchi {\it et al.} [Phys. Rev. Lett.
{\bf 90}, 196803 (2003)], we have theoretically investigated the electronic
properties of MIGS at interfaces between various alkali halides and a metal
represented by a jellium with the first-principles density functional method.
We have found that, on top of the usual evanescent state, MIGS generally have a
long tail on halogen sites with a -like character, whose penetration depth
() is as large as half the lattice constant of bulk alkali halides.
This implies that , while little dependent on the carrier density in
the jellium, is dominated by the lattice constant (hence by energy gap) of the
alkali halide, where . We also propose a possibility of the MIGS working favorably for the
exciton-mediated superconductivity.Comment: 7 pages, 9 figure
Prismane C_8: A New Form of Carbon?
Our numerical calculations on small carbon clusters point to the existence of
a metastable three-dimensional eight-atom cluster C which has a shape of a
six-atom triangular prism with two excess atoms above and below its bases. We
gave this cluster the name "prismane". The binding energy of the prismane
equals to 5.1 eV/atom, i.e., is 0.45 eV/atom lower than the binding energy of
the stable one-dimensional eight-atom cluster and 2.3 eV/atom lower than the
binding energy of the bulk graphite or diamond. Molecular dynamics simulations
give evidence for a rather high stability of the prismane, the activation
energy for a prismane decay being about 0.8 eV. The prismane lifetime increases
rapidly as the temperature decreases indicating a possibility of experimental
observation of this cluster.Comment: 5 pages (revtex), 3 figures (eps
Atomistic modeling of amorphous silicon carbide: An approximate first-principles study in constrained solution space
Localized basis ab initio molecular dynamics simulation within the density
functional framework has been used to generate realistic configurations of
amorphous silicon carbide (a-SiC). Our approach consists of constructing a set
of smart initial configurations that conform essential geometrical and
structural aspects of the materials obtained from experimental data, which is
subsequently driven via first-principles force-field to obtain the best
solution in a reduced solution space. A combination of a priori information
(primarily structural and topological) along with the ab-initio optimization of
the total energy makes it possible to model large system size (1000 atoms)
without compromising the quantum mechanical accuracy of the force-field to
describe the complex bonding chemistry of Si and C. The structural, electronic
and the vibrational properties of the models have been studied and compared to
existing theoretical models and available data from experiments. We demonstrate
that the approach is capable of producing large, realistic configurations of
a-SiC from first-principles simulation that display excellent structural and
electronic properties of a-SiC. Our study reveals the presence of predominant
short-range order in the material originating from heteronuclear Si-C bonds
with coordination defect concentration as small as 5% and the chemical disorder
parameter of about 8%.Comment: 16 pages, 7 figure
Structure and apparent topography of TiO2 (110) surfaces
We present self-consistent ab-initio total-energy and electronic-structure
calculations on stoichiometric and non-stoichiometric TiO2 (110) surfaces.
Scanning tunneling microscopy (STM) topographs are simulated by calculating the
local electronic density of states over an energy window appropriate for the
experimental positive-bias conditions. We find that under these conditions the
STM tends to image the undercoordinated Ti atoms, in spite of the physical
protrusion of the O atoms, giving an apparent reversal of topographic contrast
on the stoichiometric 1x1 or missing-row 2x1 surface. We also show that both
the interpretation of STM images and the direct comparison of surface energies
favor an added-row structure over the missing-row structure for the
oxygen-deficient 2x1 surface.Comment: 6 pages, two-column style with 5 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#ng_tio
- …
