162 research outputs found

    Spin, charge and orbital ordering in La0.5Sr1.5MnO4

    Full text link
    We have analyzed the experimental evidence of charge and orbital ordering in La0.5Sr1.5MnO4 using first principles band structure calculations. Our results suggest the presence of two types of Mn sites in the system. One of the Mn sites behaves like an Mn(3+) ion, favoring a Jahn-Teller distortion of the surrounding oxygen atoms, while the distortion around the other is not a simple breathing mode kind. Band structure effects are found to dominate the experimental spectrum for orbital and charge ordering, providing an alternate explanation for the experimentally observed results.Comment: 4 pages + 3 figures; To appear in Phys. Rev. Let

    Structural distortions and model Hamiltonian parameters: from LSDA to a tight-binding description of LaMnO_3

    Full text link
    The physics of manganites is often described within an effective two-band tight-binding (TB) model for the Mn e_g electrons, which apart from the kinetic energy includes also a local "Hund's rule" coupling to the t_{2g} core spin and a local coupling to the Jahn-Teller (JT) distortion of the oxygen octahedra. We test the validity of this model by comparing the energy dispersion calculated for the TB model with the full Kohn-Sham band-structure calculated within the local spin-density approximation (LSDA) to density functional theory. We analyze the effect of magnetic order, JT distortions, and "GdFeO_3-type" tilt-rotations of the oxygen octahedra. We show that the hopping amplitudes are independent of magnetic order and JT distortions, and that both effects can be described with a consistent set of model parameters if hopping between both nearest and next-nearest neighbors is taken into account. We determine a full set of model parameters from the density functional theory calculations, and we show that both JT distortions and Hund's rule coupling are required to obtain an insulating ground state within LSDA. Furthermore, our calculations show that the "GdFeO_3-type" rotations of the oxygen octahedra lead to a substantial reduction of the hopping amplitudes but to no significant deviation from the simple TB model.Comment: replaced with final (published) version with improved presentatio

    Electronic Structure, Local Moments and Transport in Fe_2VAl

    Full text link
    Local spin density approximation calculations are used to elucidate electronic and magnetic properties of Heusler structure Fe_2VAl. The compound is found to be a low carrier density semimetal. The Fermi surface has small hole pockets derived from a triply degenerate Fe derived state at Gamma compensated by an V derived electron pocket at the X point. The ideal compound is found to be stable against ferromagnetism. Fe impurities on V sites, however, behave as local moments. Because of the separation of the hole and electron pockets the RKKY interaction between such local moments should be rapidly oscillating on the scale of its decay, leading to the likelihood of spin-glass behavior for moderate concentrations of Fe on V sites. These features are discussed in relation to experimental observations of an unusual insulating state in this compound.Comment: 16 pages, RevTeX, 5 figure

    Unquenched large orbital magnetic moment in NiO

    Full text link
    Magnetic properties of NiO are investigated by incorporating the spin-orbit interaction in the LSDA+U scheme. It is found that the large part of orbital moment remains unquenched in NiO. The orbital moment contributes about mu_L = 0.29 mu_B to the total magnetic moment of M = 1.93 mu_B, as leads to the orbital-to-spin angular momentum ratio of L/S = 0.36. The theoretical values are in good agreement with recent magnetic X-ray scattering measurements.Comment: 4 pages, 2 figure

    Pressure induced transition from a spin glass to an itinerant ferromagnet in half doped manganite Ln0.5Ba0.5MnO3 (Ln=Sm and Nd) with quenched disorder

    Full text link
    The effect of quenched disorder on the multiphase competition has been investigated by examining the pressure phase diagram of half doped manganite Ln0.5B0.5MnO3 (Ln = Sm and Nd) with A-site disorders. Sm0.5Ba0.5MnO3, a spin glass insulator at ambient pressure, switches to a ferromagnetic metal with increasing pressure, followed by a rapid increase of the ferromagnetic transition temperature Tc. The rapid increase of Tc was confirmed also for Nd0.5Ba0.5MnO3. These observations indicate that the unusual suppression of the multicritical phase boundary in the A-site disordered system, previously observed as a function of the averaged A-site ionic radius, is essentially controlled by the pressure and hence the band width. The effect of quenched disorder is therefore much enhanced with approaching the multicritical region.Comment: 4 pages including 3 figure

    Maximally-localized Wannier Functions in Antiferromagnetic MnO within the FLAPW Formalism

    Full text link
    We have calculated the maximally-localized Wannier functions of MnO in its antiferromagnetic (AFM) rhombohedral unit cell, which contains two formula units. Electron Bloch functions are obtained with the linearized augmented plane-wave method within both the LSD and the LSD+U schemes. The thirteen uppermost occupied spin-up bands correspond in a pure ionic scheme to the five Mn 3d orbitals at the Mn_1 (spin-up) site, and the four O 2s/2p orbitals at each of the O_1 and O_2 sites. Maximal localization identifies uniquely four Wannier functions for each O, which are trigonally-distorted sp^3-like orbitals. They display a weak covalent bonding between O 2s/2p states and minority-spin d states of Mn_2, which is absent in a fully ionic picture. This bonding is the fingerprint of the interaction responsible for the AFM ordering, and its strength depends on the one-electron scheme being used. The five Mn Wannier functions are centered on the Mn_1 site, and are atomic orbitals modified by the crystal field. They are not uniquely defined by the criterion of maximal localization and we choose them as the linear combinations which diagonalize the r^2 operator, so that they display the D_3d symmetry of the Mn_1 site.Comment: 11 pages, 6 PostScript figures. Uses Revtex4. Hi-res figures available from the author

    Magnetic Phase Diagram of Ca2-xSrxRuO4 Governed by Structural Distortions

    Full text link
    We constructed, by the first-principles calculations, a magnetic phase diagram of Sr2_{2}RuO4_4 in the space spanned by structural distortions. Our phase diagram can qualitatively explain the experimental one for Ca2x_{2-x}Srx_xRuO4_4. We found that the rotation and the tilting of RuO6_6 octahedron are responsible for the ferro- and antiferro-magnetism, respectively, while the flattening of RuO6_6 is the key factor to stabilize those magnetic ground states. Our results imply that the magnetic and the structural instabilities in Sr2_2RuO4_4 are closely correlated cooperatively rather than competitively.Comment: 3 figures; accepted by PRB as rapid communicatio

    Electronic structure of the MO oxides (M=Mg, Ca, Ti, V) in the GW approximation

    Full text link
    The quasiparticle band structures of nonmagnetic monoxides, MO (M=Mg, Ca, Ti, and V), are calculated by the GW approximation. The band gap and the width of occupied oxygen 2p states in insulating MgO and CaO agree with experimental observation. In metallic TiO and VO, conduction bands originated from metal 3d states become narrower. Then the partial densities of transition metal e_g and t_2g states show an enhanced dip between the two. The effects of static screening and dynamical correlation are discussed in detail in comparison with the results of the Hartree-Fock approximation and the static Coulomb hole plus screened exchange approximation. The d-d Coulomb interaction is shown to be very much reduced by on-site and off-site d-electron screening in TiO and VO. The dielectric function and the energy loss spectrum are also presented and discussed in detail.Comment: 10 pages, 5 figure

    Implementation of the LDA+U method using the full potential linearized augmented plane wave basis

    Full text link
    We provide a straightforward and efficient procedure to combine LDA+U total energy functional with the full potential linearized augmented plane wave method. A detailed derivation of the LDA+U Kohn-Sham type equations is presented for the augmented plane wave basis set, and a simple ``second-variation'' based procedure for self-consistent LDA+U calculations is given. The method is applied to calculate electronic structure and magnetic properties of NiO and Gd. The magnetic moments and band eigenvalues obtained are in very good quantitative agreement with previous full potential LMTO calculations. We point out that LDA+U reduces the total d charge on Ni by 0.1 in NiO

    The Magnetic Phase Diagram and the Pressure and Field Dependence of the Fermi Surface in UGe2_2

    Full text link
    The ac susceptibility and de Haas-van Alphen (dHvA) effect in UGe2_2 are measured at pressures {\it P} up to 17.7 kbar for the magnetic field {\it B} parallel to the {\it a} axis, which is the easy axis of magnetization. Two anomalies are observed at {\it Bx_x}({\it P}) and {\it B}m_m({\it P}) ({\it Bx_x} >> {\it B}m_m at any {\it P}), and the {\it P}-{\it B} phase diagram is presented. The Fermi surface and quasiparticle mass are found to vary smoothly with pressure up to 17.7 kbar unless the phase boundary {\it Bx_x}({\it P}) is crossed. The observed dHvA frequencies may be grouped into three according to their pressure dependences, which are largely positive, nearly constant or negative. It is suggested that the quasiparticle mass moderately increases as the boundary {\it Bx_x}({\it P}) is approached. DHvA effect measurements are also performed across the boundary at 16.8 kbar.Comment: to be published in Phys. Rev.
    corecore