9,508 research outputs found

    Gravitational waves from nonspinning black hole-neutron star binaries: dependence on equations of state

    Full text link
    We report results of a numerical-relativity simulation for the merger of a black hole-neutron star binary with a variety of equations of state (EOSs) modeled by piecewise polytropes. We focus in particular on the dependence of the gravitational waveform at the merger stage on the EOSs. The initial conditions are computed in the moving-puncture framework, assuming that the black hole is nonspinning and the neutron star has an irrotational velocity field. For a small mass ratio of the binaries (e.g., MBH/MNS = 2 where MBH and MNS are the masses of the black hole and neutron star, respectively), the neutron star is tidally disrupted before it is swallowed by the black hole irrespective of the EOS. Especially for less-compact neutron stars, the tidal disruption occurs at a more distant orbit. The tidal disruption is reflected in a cutoff frequency of the gravitational-wave spectrum, above which the spectrum amplitude exponentially decreases. A clear relation is found between the cutoff frequency of the gravitational-wave spectrum and the compactness of the neutron star. This relation also depends weakly on the stiffness of the EOS in the core region of the neutron star, suggesting that not only the compactness but also the EOS at high density is reflected in gravitational waveforms. The mass of the disk formed after the merger shows a similar correlation with the EOS, whereas the spin of the remnant black hole depends primarily on the mass ratio of the binary, and only weakly on the EOS. Properties of the remnant disks are also analyzed.Comment: 27pages, 21 figures; erratum is added on Aug 5. 201

    On the Origin of Lymanα\alpha Blobs at High Redshift: Submillimetric Evidence for a Hyperwind Galaxy at z=3.1

    Full text link
    The most remarkable class of high-redshift objects observed so far is extended Lyα\alpha emission-line blobs found in an over-density region at redshift 3.1. They may be either a dust-enshrouded, extreme starburst galaxy with a large-scale galactic outflow (superwind) or cooling radiation from dark matter halos. Recently one of these Lyα\alpha blobs has been detected at submillimeter wavelengths (450 and 850 μ\mum). Here we show that its rest-frame spectral energy distribution between optical and far-infrared is quite similar to that of Arp 220, which is a typical ultraluminous starburst/superwind galaxy in the local universe. This suggests strongly that the superwind model proposed by Taniguchi & Shioya is applicable to this Lyα\alpha blob. Since the blob is more luminous in the infrared by a factor of 30 than Arp 220, it comprises a new population of hyperwind galaxies at high redshift.Comment: 4 pages, 1 figure. ApJ (Letters), in pres

    Quantum Hall Effect, Screening and Layer-Polarized Insulating States in Twisted Bilayer Graphene

    Get PDF
    We investigate electronic transport in dual-gated twisted bilayer graphene. Despite the sub-nanometer proximity between the layers, we identify independent contributions to the magnetoresistance from the graphene Landau level spectrum of each layer. We demonstrate that the filling factor of each layer can be independently controlled via the dual gates, which we use to induce Landau level crossings between the layers. By analyzing the gate dependence of the Landau level crossings, we characterize the finite inter-layer screening and extract the capacitance between the atomically-spaced layers. At zero filling factor, we observe magnetic and displacement field dependent insulating states, which indicate the presence of counter-propagating edge states with inter-layer coupling.Comment: 4 pages, 3 figure

    Large-Scale Regular Morphological Patterns in the Radio Jet of NGC 6251

    Get PDF
    We report on large-scale, regular morphological patterns found in the radio jet of the nearby radio galaxy NGC 6251. Investigating morphological properties of this radio jet from the nucleus to a radial distance of \sim 300 arcsec (\approx 140 kpc) mapped at 1662 MHz and 4885 MHz by Perley, Bridle, & Willis, we find three chains, each of which consists of five radio knots. We also find that eight radio knots in the first two chains consist of three small sub-knots (the triple-knotty substructures). We discuss the observational properties of these regular morphological patterns.Comment: 8 figures, 15 pages, accepted for publication in A

    Synthesis of cubic diamond in the graphite-magnesium carbonate and graphite-K2Mg(CO3)(2) systems at high pressure of 9-10 GPa region

    Get PDF
    Cubic diamond was synthesized with two systems, (1) graphite with pure magnesium carbonate (magnesite) and (2) graphite with mixed potassium and magnesium carbonate at pressures and temperatures above 9.5 GPa, 1600 degrees C and 9 GPa, 1650 degrees C, respectively. At these conditions (1) the pure magnesite is solid, whereas (2) the mixed carbonate exists as a melt. In this pressure range, graphite seems to be partially transformed into hexagonal diamond. Measured carbon isotope delta(13)C values for all the materials suggest that the origin of the carbon source to form cubic diamond was the initial graphite powder, and not the carbonates

    Saari's homographic conjecture for planar equal-mass three-body problem under a strong force potential

    Full text link
    Donald Saari conjectured that the NN-body motion with constant configurational measure is a motion with fixed shape. Here, the configurational measure μ\mu is a scale invariant product of the moment of inertia I=kmkqk2I=\sum_k m_k |q_k|^2 and the potential function U=i<jmimj/qiqjαU=\sum_{i<j} m_i m_j/|q_i-q_j|^\alpha, α>0\alpha >0. Namely, μ=Iα/2U\mu = I^{\alpha/2}U. We will show that this conjecture is true for planar equal-mass three-body problem under the strong force potential i<j1/qiqj2\sum_{i<j} 1/|q_i-q_j|^2
    corecore