6,552 research outputs found

    Entanglement Witnesses in Spin Models

    Full text link
    We construct entanglement witnesses using fundamental quantum operators of spin models which contain two-particle interactions and posses a certain symmetry. By choosing the Hamiltonian as such an operator, our method can be used for detecting entanglement by energy measurement. We apply this method to the cubic Heisenberg lattice model in a magnetic field, the XY model and other familiar spin systems. Our method is used to obtain a temperature bound for separable states for systems in thermal equilibrium. We also study the Bose-Hubbard model and relate its energy minimum for separable states to the minimum obtained from the Gutzwiller ansatz.Comment: 5 pages including 3 figures, revtex4; some typos correcte

    Far infrared luminosity functions of normal galaxies

    Get PDF
    Researchers constructed a volume limited sample of 443 optically selected nearby galaxies from the Zwicky catalog to study far infrared luminosity functions. Schechter function fits and integrated luminosity densities are calculated. Comparing the resulting infrared spectrum with the infrared spectrum for interstellar matter in the solar neighborhood, researchers find most of the infrared emission is due to dust heated by the interstellar radiation field, except at 60 micron emission where star forming regions contribute significantly

    Survival analysis, or what to do with upper limits in astronomical surveys

    Get PDF
    A field of applied statistics called survival analysis has been developed over several decades to deal with censored data, which occur in astronomical surveys when objects are too faint to be detected. How these methods can assist in the statistical interpretation of astronomical data are reviewed

    Global-in-time behavior of the solution to a Gierer-Meinhardt system

    Get PDF
    Gierer-Meinhardt system is a mathematical model to describe biological pattern formation due to activator and inhibitor. Turing pattern is expected in the presence of local self-enhancement and long-range inhibition. The long-time behavior of the solution, however, has not yet been clarified mathematically. In this paper, we study the case when its ODE part takes periodic-in-time solutions, that is, τ=s+1\tau=s+1. Under some additional assumptions on parameters, we show that the solution exists global-in-time and absorbed into one of these ODE orbits. Thus spatial patterns eventually dis- appear if those parameters are in a region without local self-enhancement or long-range inhibition

    Is PCNA unloading the central function of the Elg1/ATAD5 replication factor C-like complex?

    Get PDF
    This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.Peer reviewedPublisher PD

    The Circadian Clock Gene Period1 Connects the Molecular Clock to Neural Activity in the Suprachiasmatic Nucleus.

    Get PDF
    The neural activity patterns of suprachiasmatic nucleus (SCN) neurons are dynamically regulated throughout the circadian cycle with highest levels of spontaneous action potentials during the day. These rhythms in electrical activity are critical for the function of the circadian timing system and yet the mechanisms by which the molecular clockwork drives changes in the membrane are not well understood. In this study, we sought to examine how the clock gene Period1 (Per1) regulates the electrical activity in the mouse SCN by transiently and selectively decreasing levels of PER1 through use of an antisense oligodeoxynucleotide. We found that this treatment effectively reduced SCN neural activity. Direct current injection to restore the normal membrane potential partially, but not completely, returned firing rate to normal levels. The antisense treatment also reduced baseline [Ca(2+)]i levels as measured by Fura2 imaging technique. Whole cell patch clamp recording techniques were used to examine which specific potassium currents were altered by the treatment. These recordings revealed that the large conductance [Ca(2+)]i-activated potassium currents were reduced in antisense-treated neurons and that blocking this current mimicked the effects of the anti-sense on SCN firing rate. These results indicate that the circadian clock gene Per1 alters firing rate in SCN neurons and raise the possibility that the large conductance [Ca(2+)]i-activated channel is one of the targets

    Synchronization is optimal in non-diagonalizable networks

    Full text link
    We consider the problem of maximizing the synchronizability of oscillator networks by assigning weights and directions to the links of a given interaction topology. We first extend the well-known master stability formalism to the case of non-diagonalizable networks. We then show that, unless some oscillator is connected to all the others, networks of maximum synchronizability are necessarily non-diagonalizable and can always be obtained by imposing unidirectional information flow with normalized input strengths. The extension makes the formalism applicable to all possible network structures, while the maximization results provide insights into hierarchical structures observed in complex networks in which synchronization plays a significant role.Comment: 4 pages, 1 figure; minor revisio
    corecore