24,307 research outputs found

    Land use/land cover mapping (1:25000) of Taiwan, Republic of China by automated multispectral interpretation of LANDSAT imagery

    Get PDF
    Three methods were tested for collection of the training sets needed to establish the spectral signatures of the land uses/land covers sought due to the difficulties of retrospective collection of representative ground control data. Computer preprocessing techniques applied to the digital images to improve the final classification results were geometric corrections, spectral band or image ratioing and statistical cleaning of the representative training sets. A minimal level of statistical verification was made based upon the comparisons between the airphoto estimates and the classification results. The verifications provided a further support to the selection of MSS band 5 and 7. It also indicated that the maximum likelihood ratioing technique can achieve more agreeable classification results with the airphoto estimates than the stepwise discriminant analysis

    Splitting of Surface Plasmon Frequencies of Metal Particles in a Nematic Liquid Crystal

    Full text link
    We calculate the effective dielectric function for a suspension of small metallic particles immersed in a nematic liquid crystal (NLC) host. For a random suspension of such particles in the dilute limit, we calculate the effective dielectric tensor exactly and show that the surface plasmon (SP)resonance of such particles splits into two resonances, polarized parallel and perpendicular to the NLC director. At higher concentrations, we calculate this splitting using a generalized Maxwell-Garnett approximation, which can also be applied to a small metal particle coated with NLC. To confirm the accuracy of the MGA for NLC-coated spheres, we also use the Discrete Dipole Approximation. The calculated splitting is comparable to that observed in recent experiments on NLC-coated small metal particlesComment: 11 pages, 2 figures. To be published in Appl. Phys. Let

    Photonic band gap and x-ray optics in warm dense matter

    Full text link
    Photonic band gaps for the soft x-rays, formed in the periodic structures of solids or dense plasmas, are theoretically investigated. Optical manipulation mechanisms for the soft x-rays, which are based on these band gaps, are computationally demonstrated. The reflection and amplification of the soft x-rays, and the compression and stretching of chirped soft x-ray pulses are discussed. A scheme for lasing with atoms with two energy levels, utilizing the band gap, is also studied.Comment: 3 figures, will be published on Po

    X-ray Raman compression via two-stream instability in dense plasmas

    Full text link
    A Raman compression scheme suitable for x-rays, where the Langmuir wave is created by an intense beam rather than the pondermotive potential between the seed and pump pulses, is proposed. The required intensity of the seed and pump pulses enabling the compression could be mitigated by more than a factor of 100, compared to conventionally available other Raman compression schemes. The relevant wavelength of x-rays ranges from 1 to 10 nm

    How dsDNA breathing enhances its flexibility and instability on short length scales

    Full text link
    We study the unexpected high flexibility of short dsDNA which recently has been reported by a number of experiments. Via the Langevin dynamics simulation of our Breathing DNA model, first we observe the formation of bubbles within the duplex and also forks at the ends, with the size distributions independent of the contour length. We find that these local denaturations at a physiological temperature, despite their rare and transient presence, can lower the persistence length drastically for a short DNA segment in agreement with experiment

    Emergence of gravity from interacting simplices

    Full text link
    We consider a statistical model of interacting 4-simplices fluctuating in an N-dimensional target space. We argue that a gravitational theory may arise as a low energy effective theory in a strongly interacting phase where the simplices form clusters with an emergent space and time with the Euclidean signature. In the large N limit, two possible phases are discussed, that is, `gravitational Coulomb phase' and `gravitational Higgs phase'.Comment: 18 pages, 6 figures, one-column format; major revisions in version 5 : reviews on emergent gauge theories added; microscopic simplex model for emergent gravity added; erroneous statements on diffeomorphism invariance remove
    corecore