100 research outputs found
Organization of Block Copolymers using NanoImprint Lithography: Comparison of Theory and Experiments
We present NanoImprint lithography experiments and modeling of thin films of
block copolymers (BCP). The NanoImprint lithography is used to align
perpendicularly lamellar phases, over distances much larger than the natural
lamellar periodicity. The modeling relies on self-consistent field calculations
done in two- and three-dimensions. We get a good agreement with the NanoImprint
lithography setups. We find that, at thermodynamical equilibrium, the ordered
BCP lamellae are much better aligned than when the films are deposited on
uniform planar surfaces
Block Copolymer at Nano-Patterned Surfaces
We present numerical calculations of lamellar phases of block copolymers at
patterned surfaces. We model symmetric di-block copolymer films forming
lamellar phases and the effect of geometrical and chemical surface patterning
on the alignment and orientation of lamellar phases. The calculations are done
within self-consistent field theory (SCFT), where the semi-implicit relaxation
scheme is used to solve the diffusion equation. Two specific set-ups, motivated
by recent experiments, are investigated. In the first, the film is placed on
top of a surface imprinted with long chemical stripes. The stripes interact
more favorably with one of the two blocks and induce a perpendicular
orientation in a large range of system parameters. However, the system is found
to be sensitive to its initial conditions, and sometimes gets trapped into a
metastable mixed state composed of domains in parallel and perpendicular
orientations. In a second set-up, we study the film structure and orientation
when it is pressed against a hard grooved mold. The mold surface prefers one of
the two components and this set-up is found to be superior for inducing a
perfect perpendicular lamellar orientation for a wide range of system
parameters
Matrix Metalloproteinase-1 and -9 in Human Placenta during Spontaneous Vaginal Delivery and Caesarean Sectioning in Preterm Pregnancy
Preterm birth is a major public health problem in terms of loss of life, long-term and short term disabilities worldwide. The process of parturition (both term and preterm) involves intensive remodelling of the extracellular matrix (ECM) in the placenta and fetal membranes by matrix metalloproteinases (MMPs). Our previous studies show reduced docosahexaenoic acid (DHA) in women delivering preterm. Further omega 3 fatty acids are reported to regulate MMP levels. This study was undertaken to examine the placental levels of MMPs and their association with placental DHA levels in women delivering preterm. The levels of MMP-1 and MMP-9 in 74 women delivering preterm (52 by spontaneous vaginal delivery and 22 by caesarean sectioning) and 75 women delivering at term (59 by spontaneous vaginal delivery and 16 by caesarean sectioning) were determined by enzyme-linked immunosorbent assay (ELISA) and their association with placental DHA was studied. Placental MMP-1 levels were higher (p<0.05) in women delivering preterm (both by spontaneous vaginal delivery and caesarean sectioning) as compared to those delivering at term. In contrast, placental MMP-9 levels in preterm pregnancies was higher (p<0.05) in women with spontaneous vaginal delivery while lower (p<0.05) in women delivering by caesarean sectioning. Low placental DHA was associated with higher placental MMP-9 levels. Our study suggests a differential effect of mode of delivery on the levels of MMPs from placenta. Further this study suggests a negative association of DHA and the levels of MMP-9 in human placenta although the mechanisms need further study
One-Dimensional Metal Nanowire Assembly via Block Copolymer Soft Graphoepitaxy
We accomplished a facile and scalable route to linearly stacked, one-dimensional metal nanowire assembly via soft graphoepitaxy of block copolymers. A one-dimensional nanoscale lamellar stack could be achieved by controlling the block copolymer him thickness self-assembled within the disposable topographic confinement and utilized as a template to generate linear metal nanowire assembly. The mechanism underlying this interesting morhpology evolution was investigated by self-consistent field theory. The optical properties of metal nanowire assembly involved with surface plasmon polariton were investigated by first principle calculations.close594
- …