170 research outputs found
Magneto-Optical Trap for Thulium Atoms
Thulium atoms are trapped in a magneto-optical trap using a strong transition
at 410 nm with a small branching ratio. We trap up to atoms at
a temperature of 0.8(2) mK after deceleration in a 40 cm long Zeeman slower.
Optical leaks from the cooling cycle influence the lifetime of atoms in the MOT
which varies between 0.3 -1.5 s in our experiments. The lower limit for the
leaking rate from the upper cooling level is measured to be 22(6) s. The
repumping laser transferring the atomic population out of the F=3 hyperfine
ground-state sublevel gives a 30% increase for the lifetime and the number of
atoms in the trap.Comment: 4 pages, 6 figure
Scalable Focused Ion Beam Creation of Nearly Lifetime-Limited Single Quantum Emitters in Diamond Nanostructures
The controlled creation of defect center---nanocavity systems is one of the
outstanding challenges for efficiently interfacing spin quantum memories with
photons for photon-based entanglement operations in a quantum network. Here, we
demonstrate direct, maskless creation of atom-like single silicon-vacancy (SiV)
centers in diamond nanostructures via focused ion beam implantation with nm lateral precision and nm positioning accuracy relative to a
nanocavity. Moreover, we determine the Si+ ion to SiV center conversion yield
to and observe a 10-fold conversion yield increase by additional
electron irradiation. We extract inhomogeneously broadened ensemble emission
linewidths of GHz, and close to lifetime-limited single-emitter
transition linewidths down to MHz corresponding to -times
the natural linewidth. This demonstration of deterministic creation of
optically coherent solid-state single quantum systems is an important step
towards development of scalable quantum optical devices
Doppler-free frequency modulation spectroscopy of atomic erbium in a hollow cathode discharge cell
The erbium atomic system is a promising candidate for an atomic Bose-Einstein
condensate of atoms with a non-vanishing orbital angular momentum ()
of the electronic ground state. In this paper we report on the frequency
stabilization of a blue external cavity diode laser system on the 400.91
laser cooling transition of atomic erbium. Doppler-free saturation spectroscopy
is applied within a hollow cathode discharge tube to the corresponding
electronic transition of several of the erbium isotopes. Using the technique of
frequency modulation spectroscopy, a zero-crossing error signal is produced to
lock the diode laser frequency on the atomic erbium resonance. The latter is
taken as a reference laser to which a second main laser system, used for laser
cooling of atomic erbium, is frequency stabilized
Photon-mediated interactions between quantum emitters in a diamond nanocavity
Photon-mediated interactions between quantum systems are essential for realizing quantum networks and scalable quantum information processing. We demonstrate such interactions between pairs of silicon-vacancy (SiV) color centers coupled to a diamond nanophotonic cavity. When the optical transitions of the two color centers are tuned into resonance, the coupling to the common cavity mode results in a coherent interaction between them, leading to spectrally-resolved superradiant and subradiant states. We use the electronic spin degrees of freedom of the SiV centers to control these optically-mediated interactions. Such controlled interactions will be crucial in developing cavity-mediated quantum gates between spin qubits and for realizing scalable quantum network nodes
The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules
Beams of atoms and molecules are stalwart tools for spectroscopy and studies
of collisional processes. The supersonic expansion technique can create cold
beams of many species of atoms and molecules. However, the resulting beam is
typically moving at a speed of 300-600 m/s in the lab frame, and for a large
class of species has insufficient flux (i.e. brightness) for important
applications. In contrast, buffer gas beams can be a superior method in many
cases, producing cold and relatively slow molecules in the lab frame with high
brightness and great versatility. There are basic differences between
supersonic and buffer gas cooled beams regarding particular technological
advantages and constraints. At present, it is clear that not all of the
possible variations on the buffer gas method have been studied. In this review,
we will present a survey of the current state of the art in buffer gas beams,
and explore some of the possible future directions that these new methods might
take
- …
