4,733 research outputs found

    Nonparametric Multi-shape Modeling with Uncertainty Quantification

    Full text link
    The modeling and uncertainty quantification of closed curves is an important problem in the field of shape analysis, and can have significant ramifications for subsequent statistical tasks. Many of these tasks involve collections of closed curves, which often exhibit structural similarities at multiple levels. Modeling multiple closed curves in a way that efficiently incorporates such between-curve dependence remains a challenging problem. In this work, we propose and investigate a multiple-output (a.k.a. multi-output), multi-dimensional Gaussian process modeling framework. We illustrate the proposed methodological advances, and demonstrate the utility of meaningful uncertainty quantification, on several curve and shape-related tasks. This model-based approach not only addresses the problem of inference on closed curves (and their shapes) with kernel constructions, but also opens doors to nonparametric modeling of multi-level dependence for functional objects in general.Comment: 66 pages, 20 figure

    Ultrafast Carrier Recombination and Generation Rates for Plasmon Emission and Absorption in Graphene

    Full text link
    Electron-hole generation and recombination rates for plasmon emission and absorption in Graphene are presented. The recombination times of carriers due to plasmon emission have been found to be in the tens of femtoseconds to hundreds of picoseconds range. The recombination times depend sensitively on the carrier energy, carrier density, temperature, and the plasmon dispersion. Carriers near the Dirac point are found to have much longer lifetimes compared to carriers at higher energies. Plasmons in a Graphene layer on a polar substrate hybridize with the surface optical phonons and this hybridization modifies the plasmon dispersion. We also present generation and recombination rates of carriers due to plasmon emission and absorption in Graphene layers on polar substrates.Comment: 7 Pages, 11 Figures, To appear in Phys. Rev. B (2011

    Lawrence Livermore National Laboratory Safeguards and Security quarterly progress report ending March 31, 1996

    Full text link
    LLNL carries out safeguards and security activities for DOE Office of Safeguards and Security (OSS) and other organizations within and outside DOE. LLNL is supporting OSS in 6 areas: safeguards technology, safeguards and materials accountability, computer security--distributed systems, complex-wide access control, standardization of security systems, and information technology and security center. This report describes the activities in each of these areas

    The cranial biomechanics and feeding performance ofHomo floresiensis

    Get PDF
    Homo floresiensis is a small-bodied hominin from Flores, Indonesia, that exhibits plesiomorphic dentognathic features, including large premolars and a robust mandible, aspects of which have been considered australopith-like. However, relative to australopith species, H. floresiensis exhibits reduced molar size and a cranium with diminutive midfacial dimensions similar to those of later Homo, suggesting a reduction in the frequency of forceful biting behaviours. Our study uses finite-element analysis to examine the feeding biomechanics of the H. floresiensis cranium. We simulate premolar (P3) and molar (M2) biting in a finite-element model (FEM) of the H. floresiensis holotype cranium (LB1) and compare the mechanical results with FEMs of chimpanzees, modern humans and a sample of australopiths (MH1, Sts 5, OH5). With few exceptions, strain magnitudes in LB1 resemble elevated levels observed in modern Homo. Our analysis of LB1 suggests that H. floresiensis could produce bite forces with high mechanical efficiency, but was subject to tensile jaw joint reaction forces during molar biting, which perhaps constrained maximum postcanine bite force production. The inferred feeding biomechanics of H. floresiensis closely resemble modern humans, suggesting that this pattern may have been present in the last common ancestor of Homo sapiens and H. floresiensis

    Observation of a multimode plasma response and its relationship to density pumpout and edge-localized mode suppression

    Get PDF
    Density pumpout and edge-localized mode (ELM) suppression by applied n=2 magnetic fields in low-collisionality DIII-D plasmas are shown to be correlated with the magnitude of the plasma response driven on the high-field side (HFS) of the magnetic axis but not the low-field side (LFS) midplane. These distinct responses are a direct measurement of a multimodal magnetic plasma response, with each structure preferentially excited by a different n=2 applied spectrum and preferentially detected on the LFS or HFS. Ideal and resistive magneto-hydrodynamic (MHD) calculations find that the LFS measurement is primarily sensitive to the excitation of stable kink modes, while the HFS measurement is primarily sensitive to resonant currents (whether fully shielding or partially penetrated). The resonant currents are themselves strongly modified by kink excitation, with the optimal applied field pitch for pumpout and ELM suppression significantly differing from equilibrium field alignment.This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards No. DE-FC02-04ER54698, No. DE-AC02-09CH11466, No. DE-FG02-04ER54761, No. DE-AC05-06OR23100, No. DE-SC0001961, and No. DE-AC05-00OR22725. S. R. H. was supported by AINSE and ANSTO

    RELICS: The Reionization Lensing Cluster Survey and the Brightest High-z Galaxies

    Get PDF
    Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here the z ~ 6-8 candidate high-redshift galaxies from the Reionization Lensing Cluster Survey (RELICS), a Hubble and Spitzer Space Telescope survey of 41 massive galaxy clusters spanning an area of ≈200 arcmin². These clusters were selected to be excellent lenses, and we find similar high-redshift sample sizes and magnitude distributions as the Cluster Lensing And Supernova survey with Hubble (CLASH). We discover 257, 57, and eight candidate galaxies at z ~ 6, 7, and 8 respectively, (322 in total). The observed (lensed) magnitudes of the z ~ 6 candidates are as bright as AB mag ~23, making them among the brightest known at these redshifts, comparable with discoveries from much wider, blank-field surveys. RELICS demonstrates the efficiency of using strong gravitational lenses to produce high-redshift samples in the epoch of reionization. These brightly observed galaxies are excellent targets for follow-up study with current and future observatories, including the James Webb Space Telescope

    Photocurrent measurements of supercollision cooling in graphene

    Full text link
    The cooling of hot electrons in graphene is the critical process underlying the operation of exciting new graphene-based optoelectronic and plasmonic devices, but the nature of this cooling is controversial. We extract the hot electron cooling rate near the Fermi level by using graphene as novel photothermal thermometer that measures the electron temperature (T(t)T(t)) as it cools dynamically. We find the photocurrent generated from graphene p−np-n junctions is well described by the energy dissipation rate CdT/dt=−A(T3−Tl3)C dT/dt=-A(T^3-T_l^3), where the heat capacity is C=αTC=\alpha T and TlT_l is the base lattice temperature. These results are in disagreement with predictions of electron-phonon emission in a disorder-free graphene system, but in excellent quantitative agreement with recent predictions of a disorder-enhanced supercollision (SC) cooling mechanism. We find that the SC model provides a complete and unified picture of energy loss near the Fermi level over the wide range of electronic (15 to ∼\sim3000 K) and lattice (10 to 295 K) temperatures investigated.Comment: 7pages, 5 figure

    Feeding postural behaviors and food geometric and material properties in bearded capuchin monkeys (Sapajus libidinosus)

    Get PDF
    Foods that are geometrically and mechanically challenging to eat have been associated with specializations in feeding behavior and craniodental morphology across primates, and many of these foods are embedded, requiring a variety of positional behaviors during feeding. However, variation in positional behaviors in response to food properties is not well understood. Here, we examine differences in feeding postural behaviors across feeding events in relation to substrate and food geometric and material properties in a species of extractive foragers, bearded capuchins (Sapajus libidinosus).Methods and materialsWe coded over 1400 co-occurring postural and feeding behaviors, their durations, and relative sizes of substrate and food from videos recorded at Fazenda Boa Vista in Gilbués, Piauí, Brazil. Food material properties were measured from foods collected at the time of the video recordings.ResultsOur results suggest that bearded capuchin feeding postures significantly differ across the feeding sequence, with substrate size, and between foods of high and low toughness and elastic modulus. Feeding postures were less variable for highly mechanically challenging foods. Food size also had a significant effect on postural behaviors. Large foods were more likely to be associated with suspended postures and small foods with sitting and squatting. Feeding postural behaviors were best explained by a combination of substrate and food variables.ConclusionsOur results indicate that food geometric and mechanical properties have a significant influence on feeding postural behaviors in bearded capuchins. We posit that feeding postural behaviors reflect a combination of substrate variables and food properties, and large, mechanically challenging foods have a limiting effect on postural variation.<br
    • …
    corecore