766 research outputs found

    Overhead and noise threshold of fault-tolerant quantum error correction

    Full text link
    Fault tolerant quantum error correction (QEC) networks are studied by a combination of numerical and approximate analytical treatments. The probability of failure of the recovery operation is calculated for a variety of CSS codes, including large block codes and concatenated codes. Recent insights into the syndrome extraction process, which render the whole process more efficient and more noise-tolerant, are incorporated. The average number of recoveries which can be completed without failure is thus estimated as a function of various parameters. The main parameters are the gate (gamma) and memory (epsilon) failure rates, the physical scale-up of the computer size, and the time t_m required for measurements and classical processing. The achievable computation size is given as a surface in parameter space. This indicates the noise threshold as well as other information. It is found that concatenated codes based on the [[23,1,7]] Golay code give higher thresholds than those based on the [[7,1,3]] Hamming code under most conditions. The threshold gate noise gamma_0 is a function of epsilon/gamma and t_m; example values are {epsilon/gamma, t_m, gamma_0} = {1, 1, 0.001}, {0.01, 1, 0.003}, {1, 100, 0.0001}, {0.01, 100, 0.002}, assuming zero cost for information transport. This represents an order of magnitude increase in tolerated memory noise, compared with previous calculations, which is made possible by recent insights into the fault-tolerant QEC process.Comment: 21 pages, 12 figures, minor mistakes corrected and layout improved, ref added; v4: clarification of assumption re logic gate

    Efficient fault-tolerant quantum computing

    Full text link
    Fault tolerant quantum computing methods which work with efficient quantum error correcting codes are discussed. Several new techniques are introduced to restrict accumulation of errors before or during the recovery. Classes of eligible quantum codes are obtained, and good candidates exhibited. This permits a new analysis of the permissible error rates and minimum overheads for robust quantum computing. It is found that, under the standard noise model of ubiquitous stochastic, uncorrelated errors, a quantum computer need be only an order of magnitude larger than the logical machine contained within it in order to be reliable. For example, a scale-up by a factor of 22, with gate error rate of order 10510^{-5}, is sufficient to permit large quantum algorithms such as factorization of thousand-digit numbers.Comment: 21 pages plus 5 figures. Replaced with figures in new format to avoid problem

    Local Fault-tolerant Quantum Computation

    Full text link
    We analyze and study the effects of locality on the fault-tolerance threshold for quantum computation. We analytically estimate how the threshold will depend on a scale parameter r which estimates the scale-up in the size of the circuit due to encoding. We carry out a detailed semi-numerical threshold analysis for concatenated coding using the 7-qubit CSS code in the local and `nonlocal' setting. First, we find that the threshold in the local model for the [[7,1,3]] code has a 1/r dependence, which is in correspondence with our analytical estimate. Second, the threshold, beyond the 1/r dependence, does not depend too strongly on the noise levels for transporting qubits. Beyond these results, we find that it is important to look at more than one level of concatenation in order to estimate the threshold and that it may be beneficial in certain places, like in the transportation of qubits, to do error correction only infrequently.Comment: REVTeX, 44 pages, 19 figures, to appear in Physical Review

    Quantum Teleportation is a Universal Computational Primitive

    Get PDF
    We present a method to create a variety of interesting gates by teleporting quantum bits through special entangled states. This allows, for instance, the construction of a quantum computer based on just single qubit operations, Bell measurements, and GHZ states. We also present straightforward constructions of a wide variety of fault-tolerant quantum gates.Comment: 6 pages, REVTeX, 6 epsf figure

    Numerical simulation of information recovery in quantum computers

    Full text link
    Decoherence is the main problem to be solved before quantum computers can be built. To control decoherence, it is possible to use error correction methods, but these methods are themselves noisy quantum computation processes. In this work we study the ability of Steane's and Shor's fault-tolerant recovering methods, as well a modification of Steane's ancilla network, to correct errors in qubits. We test a way to measure correctly ancilla's fidelity for these methods, and state the possibility of carrying out an effective error correction through a noisy quantum channel, even using noisy error correction methods.Comment: 38 pages, Figures included. Accepted in Phys. Rev. A, 200

    Pulsed force sequences for fast phase-insensitive quantum gates in trapped ions

    Full text link
    We show how to create quantum gates of arbitrary speed between trapped ions, using a laser walking wave, with complete insensitivity to drift of the optical phase, and requiring cooling only to the Lamb-Dicke regime. We present pulse sequences that satisfy the requirements and are easy to produce in the laboratory.Comment: 11 pages, 3 figure

    Active stabilisation, quantum computation and quantum state synthesis

    Full text link
    Active stabilisation of a quantum system is the active suppression of noise (such as decoherence) in the system, without disrupting its unitary evolution. Quantum error correction suggests the possibility of achieving this, but only if the recovery network can suppress more noise than it introduces. A general method of constructing such networks is proposed, which gives a substantial improvement over previous fault tolerant designs. The construction permits quantum error correction to be understood as essentially quantum state synthesis. An approximate analysis implies that algorithms involving very many computational steps on a quantum computer can thus be made possible.Comment: 8 pages LaTeX plus 4 figures. Submitted to Phys. Rev. Let

    THE ANALYSIS OF THE USE AI IN PIG BREEDING

    Get PDF

    Quantum Computing with Very Noisy Devices

    Full text link
    In theory, quantum computers can efficiently simulate quantum physics, factor large numbers and estimate integrals, thus solving otherwise intractable computational problems. In practice, quantum computers must operate with noisy devices called ``gates'' that tend to destroy the fragile quantum states needed for computation. The goal of fault-tolerant quantum computing is to compute accurately even when gates have a high probability of error each time they are used. Here we give evidence that accurate quantum computing is possible with error probabilities above 3% per gate, which is significantly higher than what was previously thought possible. However, the resources required for computing at such high error probabilities are excessive. Fortunately, they decrease rapidly with decreasing error probabilities. If we had quantum resources comparable to the considerable resources available in today's digital computers, we could implement non-trivial quantum computations at error probabilities as high as 1% per gate.Comment: 47 page
    corecore