770 research outputs found
The Hydrodynamical Limit of Quantum Hall system
We study the current algebra of FQHE systems in the hydrodynamical limit of
small amplitude, long-wavelength fluctuations. We show that the algebra
simplifies considerably in this limit. The hamiltonian is expressed in a
current-current form and the operators creating inter-Landau level and lowest
Landau level collective excitations are identified.Comment: Revtex, 16 page
Single-Symbol ML Decodable Distributed STBCs for Partially-Coherent Cooperative Networks
Space-time block codes (STBCs) that are single-symbol decodable (SSD) in a
co-located multiple antenna setting need not be SSD in a distributed
cooperative communication setting. A relay network with N relays and a single
source-destination pair is called a partially-coherent relay channel (PCRC) if
the destination has perfect channel state information (CSI) of all the channels
and the relays have only the phase information of the source-to-relay channels.
In this paper, first, a new set of necessary and sufficient conditions for a
STBC to be SSD for co-located multiple antenna communication is obtained. Then,
this is extended to a set of necessary and sufficient conditions for a
distributed STBC (DSTBC) to be SSD for a PCRC, by identifying the additional
conditions. Using this, several SSD DSTBCs for PCRC are identified among the
known classes of STBCs. It is proved that even if a SSD STBC for a co-located
MIMO channel does not satisfy the additional conditions for the code to be SSD
for a PCRC, single-symbol decoding of it in a PCRC gives full-diversity and
only coding gain is lost. It is shown that when a DSTBC is SSD for a PCRC, then
arbitrary coordinate interleaving of the in-phase and quadrature-phase
components of the variables does not disturb its SSD property for PCRC.
Finally, it is shown that the possibility of {\em channel phase compensation}
operation at the relay nodes using partial CSI at the relays increases the
possible rate of SSD DSTBCs from when the relays do not have CSI
to 1/2, which is independent of N
Phase transitions in periodically driven macroscopic systems
We study the large-time behavior of a class of periodically driven
macroscopic systems. We find, for a certain range of the parameters of either
the system or the driving fields, the time-averaged asymptotic behavior
effectively is that of certain other equilibrium systems. We then illustrate
with a few examples how the conventional knowledge of the equilibrium systems
can be made use in choosing the driving fields to engineer new phases and to
induce new phase transitions.Comment: LaTex, 8 page
Critical dynamics of nonconserved -vector model with anisotropic nonequilibrium perturbations
We study dynamic field theories for nonconserving -vector models that are
subject to spatial-anisotropic bias perturbations. We first investigate the
conditions under which these field theories can have a single length scale.
When N=2 or , it turns out that there are no such field theories, and,
hence, the corresponding models are pushed by the bias into the Ising class. We
further construct nontrivial field theories for N=3 case with certain bias
perturbations and analyze the renormalization-group flow equations. We find
that the three-component systems can exhibit rich critical behavior belonging
to two different universality classes.Comment: Included RG analysis and discussion on new universality classe
Improving water productivity, reducing poverty and enhancing equity in mixed crop-livestock systems in the Indo-Gangetic Basin: CPWF project report 68
Farming systems / Mixed farming / Water productivity / Feed production / Livestock / Energy consumption / Gender / Poverty / River basins / Case studies / India / Indo-Gangetic Basin / West Bengal / Haryana / Uttar Pradesh
Ages and Metallicities of Cluster Galaxies in a779 Using Modified Strömgren Photometry
In the quest for the formation and evolution of galaxy clusters, Rakos and co-workers introduced a spectrophotometric method using modified Strömgren photometry, but with the considerable debate toward the project's abilities, we re-introduce the system by testing for the repeatability of the modified Strömgren colors and compare them with the Strömgren colors, and check for the reproducibility of the ages and metallicities (using the Principle Component Analysis (PCA) technique and the GALEV models) for the six common galaxies in all three A779 data sets. As a result, a fair agreement between two filter systems was found to produce similar colors (with a precision of 0.09 mag in (uz - vz), 0.02 mag in (bz - yz), and 0.03 mag in (vz - vz)) and the generated ages and metallicities are also similar (with an uncertainty of 0.36 Gyr and 0.04 dex from PCA and 0.44 Gyr and 0.2 dex using the GALEV models). We infer that the technique is able to relieve the age-metallicity degeneracy by separating the age effects from the metallicity effects, but it is still unable to completely eliminate it.We further extend this paper to re-study the evolution of galaxies in the low mass, dynamically poor A779 cluster (as it was not elaborately analyzed by Rakos and co-workers in their previous work) by correlating the luminosity (mass), density, and radial distance with the estimated age, metallicity, and the star formation history. Our results distinctly show the bimodality of the young, low-mass, metal-poor population with a mean age of 6.7 Gyr (± 0.5 Gyr) and the old, high-mass, metal-rich galaxies with a mean age of 9 Gyr (± 0.5 Gyr). The method also observes the color evolution of the blue cluster galaxies to red (Butcher-Oemler phenomenon), and the downsizing phenomenon. Our analysis shows that modified Strömgren photometry is very well suited for studying low- and intermediate-z clusters, as it is capable of observing deeper with better spatial resolution at spectroscopic redshift limits, and the narrow-band filters estimate the age and metallicity with fewer uncertainties compared to other methods that study stellar population scenarios
Disorder effects in electronic structure of substituted transition metal compounds
Investigating LaNi(1-x)M(x)O3 (M = Mn and Fe), we identify a characteristic
evolution of the spectral function with increasing disorder in presence of
strong interaction effects across the metal-insulator transition. We discuss
these results vis-a-vis existing theories of electronic structure in
simultaneous presence of disorder and interaction.Comment: Revtex, 4 pages, 3 postscript figures (To appear in Phys. Rev. Lett
Phase separation and valence instabilities in cuprate superconductors. Effective one-band model approach
We study the Cu-O valence instability (VI) and the related phase separation
(PS) driven by Cu-O nearest-neighbor repulsion , using an effective
extended one-band Hubbard model () obtained from the extended
three-bandHubbard model, through an appropriate low-energy reduction.
is solved by exact diagonalization of a square cluster with 10 unit cells and
also within a slave-boson mean-field theory. Its parameters depend on doping
for or on-site O repulsion . The results using both
techniques coincide in that there is neither VI nor PS for doping levels
if eV. The PS region begins for eV
at large doping and increases with increasing . The PS also
increases with increasing on-site Cu repulsion .Comment: 16 pages and 10 figures in postscript format, compressed with uufile
Anomalous Spin Dynamics observed by High Frequency ESR in Honeycomb Lattice Antiferromagnet InCu2/3V1/3O3
High-frequency ESR results on the S=1/2 Heisenberg hexagonal antiferromagnet
InCu2/3V1/3O3 are reported. This compound appears to be a rare model substance
for the honeycomb lattice antiferromagnet with very weak interlayer couplings.
The high-temperature magnetic susceptibility can be interpreted by the S=1/2
honeycomb lattice antiferromagnet, and it shows a magnetic-order-like anomaly
at TN=38 K. Although, the resonance field of our high-frequency ESR shows the
typical behavior of the antiferromagnetic resonance, the linewidth of our
high-frequency ESR continues to increase below TN, while it tends to decrease
as the temperature in a conventional three-dimensional antiferromagnet
decreases. In general, a honeycomb lattice antiferromagnet is expected to show
a simple antiferromagnetic order similar to that of a square lattice
antiferromagnet theoretically because both antiferromagnets are bipartite
lattices. However, we suggest that the observed anomalous spin dynamics below
TN is the peculiar feature of the honeycomb lattice antiferromagnet that is not
observed in the square lattice antiferromagnet.Comment: 5 pages, 5 figure
- …
