15,892 research outputs found
A DEIM Induced CUR Factorization
We derive a CUR matrix factorization based on the Discrete Empirical
Interpolation Method (DEIM). For a given matrix , such a factorization
provides a low rank approximate decomposition of the form ,
where and are subsets of the columns and rows of , and is
constructed to make a good approximation. Given a low-rank singular value
decomposition , the DEIM procedure uses and to
select the columns and rows of that form and . Through an error
analysis applicable to a general class of CUR factorizations, we show that the
accuracy tracks the optimal approximation error within a factor that depends on
the conditioning of submatrices of and . For large-scale problems,
and can be approximated using an incremental QR algorithm that makes one
pass through . Numerical examples illustrate the favorable performance of
the DEIM-CUR method, compared to CUR approximations based on leverage scores
Quantum emitters coupled to surface plasmons of a nano-wire: A Green function approach
We investigate a system consisting of a single, as well as two emitters
strongly coupled to surface plasmon modes of a nano-wire using a Green function
approach. Explicit expressions are derived for the spontaneous decay rate into
the plasmon modes and for the atom-plasmon coupling as well as a
plasmon-mediated atom-atom coupling. Phenomena due to the presence of losses in
the metal are discussed. In case of two atoms, we observe Dicke sub- and
superradiance resulting from their plasmon-mediated interaction. Based on this
phenomenon, we propose a scheme for a deterministic two-qubit quantum gate. We
also discuss a possible realization of interesting many-body Hamiltonians, such
as the spin-boson model, using strong emitter-plasmon coupling.Comment: 12 pages, 16 figure
Measuring the Weibull modulus of microscope slides
The objectives are that students will understand why a three-point bending test is used for ceramic specimens, learn how Weibull statistics are used to measure the strength of brittle materials, and appreciate the amount of variation in the strength of brittle materials with low Weibull modulus. They will understand how the modulus of rupture is used to represent the strength of specimens in a three-point bend test. In addition, students will learn that a logarithmic transformation can be used to convert an exponent into the slope of a straight line. The experimental procedures are explained
Water impact analysis of space shuttle solid rocket motor by the finite element method
Preliminary analysis showed that the doubly curved triangular shell elements were too stiff for these shell structures. The doubly curved quadrilateral shell elements were found to give much improved results. A total of six load cases were analyzed in this study. The load cases were either those resulting from a static test using reaction straps to simulate the drop conditions or under assumed hydrodynamic conditions resulting from a drop test. The latter hydrodynamic conditions were obtained through an emperical fit of available data. Results obtained from a linear analysis were found to be consistent with results obtained elsewhere with NASTRAN and BOSOR. The nonlinear analysis showed that the originally assumed loads would result in failure of the shell structures. The nonlinear analysis also showed that it was useful to apply internal pressure as a stabilizing influence on collapse. A final analysis with an updated estimate of load conditions resulted in linear behavior up to full load
Photon scattering by a three-level emitter in a one-dimensional waveguide
We discuss the scattering of photons from a three-level emitter in a
one-dimensional waveguide, where the transport is governed by the interference
of spontaneously emitted and directly transmitted waves. The scattering problem
is solved in closed form for different level structures. Several possible
applications are discussed: The state of the emitter can be switched
deterministically by Raman scattering, thus enabling applications in quantum
computing such as a single photon transistor. An array of emitters gives rise
to a photonic band gap structure, which can be tuned by a classical driving
laser. A disordered array leads to Anderson localization of photons, where the
localization length can again be controlled by an external driving.Comment: 17 pages, 8 figure
Spin-Photon Entangling Diode
We propose a semiconductor device that can electrically generate entangled
electron spin-photon states, providing a building block for entanglement of
distant spins. The device consists of a p-i-n diode structure that incorporates
a coupled double quantum dot. We show that electronic control of the diode bias
and local gating allow for the generation of single photons that are entangled
with a robust quantum memory based on the electron spins. Practical performance
of this approach to controlled spin-photon entanglement is analyzed.Comment: 4 pages, 2 figures; figures update
Deep transfer learning for improving single-EEG arousal detection
Datasets in sleep science present challenges for machine learning algorithms
due to differences in recording setups across clinics. We investigate two deep
transfer learning strategies for overcoming the channel mismatch problem for
cases where two datasets do not contain exactly the same setup leading to
degraded performance in single-EEG models. Specifically, we train a baseline
model on multivariate polysomnography data and subsequently replace the first
two layers to prepare the architecture for single-channel
electroencephalography data. Using a fine-tuning strategy, our model yields
similar performance to the baseline model (F1=0.682 and F1=0.694,
respectively), and was significantly better than a comparable single-channel
model. Our results are promising for researchers working with small databases
who wish to use deep learning models pre-trained on larger databases.Comment: Accepted for presentation at EMBC202
Fault-tolerant Quantum Communication with Minimal Physical Requirements
We describe a novel protocol for a quantum repeater which enables long
distance quantum communication through realistic, lossy photonic channels.
Contrary to previous proposals, our protocol incorporates active purification
of arbitrary errors at each step of the protocol using only two qubits at each
repeater station. Because of these minimal physical requirements, the present
protocol can be realized in simple physical systems such as solid-state single
photon emitters. As an example, we show how nitrogen vacancy color centers in
diamond can be used to implement the protocol, using the nuclear and electronic
spin to form the two qubits.Comment: 4 pages, 3 figures. V2: Minor modifications. V3: Major changes in the
presentation and new titl
- …
