218 research outputs found
Time Modulation of K-electron Capture Decay of Hydrogen-Like Ions with Multiphoton Resonance Transitions
The multiphoton resonance transitions between ground hyperfine states are
used for the time modulation of the electron capture decay of hydrogen like
ions with the Gamow-Teller transition . The proposed mechanism
offers a time oscillating decay with the frequency up to 0.1 Hz. The experiment
to observe the modulation is proposed for ions stored in a Penning trap. An
attempt to understand the GSI anomaly with multiple photon transitions is made.Comment: 5 pages, REVTeX. Added text and a reference
Photoionization Rates of Cs Rydberg Atoms in a 1064 nm Far Off-Resonance Trap
Experimental measurements of photoionization rates of Rydberg
states of Cs () in a 1064 nm far off-resonance dipole trap
are presented. The photoionization rates are obtained by measuring the
lifetimes of Rydberg atoms produced inside of a 1064 nm far off-resonance trap
and comparing the lifetimes to corresponding control experiments in a
magneto-optical trap. Experimental results for the control experiments agree
with recent theoretical predictions for Rydberg state lifetimes and measured
photoionization rates are in agreement with transition rates calculated from a
model potential.Comment: 12 pages, 4 figure
Dispersive Optical Interface Based on Nanofiber-Trapped Atoms
We dispersively interface an ensemble of one thousand atoms trapped in the
evanescent field surrounding a tapered optical nanofiber. This method relies on
the azimuthally-asymmetric coupling of the ensemble with the evanescent field
of an off-resonant probe beam, transmitted through the nanofiber. The resulting
birefringence and dispersion are significant; we observe a phase shift per atom
of \,1\,mrad at a detuning of six times the natural linewidth,
corresponding to an effective resonant optical density per atom of 0.027.
Moreover, we utilize this strong dispersion to non-destructively determine the
number of atoms.Comment: 4 pages, 4 figure
Spinor Bose Condensates in Optical Traps
In an optical trap, the ground state of spin-1 Bosons such as Na,
K, and Rb can be either a ferromagnetic or a "polar" state,
depending on the scattering lengths in different angular momentum channel. The
collective modes of these states have very different spin character and spatial
distributions. While ordinary vortices are stable in the polar state, only
those with unit circulation are stable in the ferromagnetic state. The
ferromagnetic state also has coreless (or Skyrmion) vortices like those of
superfluid He-A. Current estimates of scattering lengths suggest that the
ground states of Na and Rb condensate are a polar state and a
ferromagnetic state respectively.Comment: 11 pages, no figures. email : [email protected]
Spectroscopy of a narrow-line laser cooling transition in atomic dysprosium
The laser cooling and trapping of ultracold neutral dysprosium has been
recently demonstrated using the broad, open 421-nm cycling transition.
Narrow-line magneto-optical trapping of Dy on longer wavelength transitions
would enable the preparation of ultracold Dy samples suitable for loading
optical dipole traps and subsequent evaporative cooling. We have identified the
closed 741-nm cycling transition as a candidate for the narrow-line cooling of
Dy. We present experimental data on the isotope shifts, the hyperfine constants
A and B, and the decay rate of the 741-nm transition. In addition, we report a
measurement of the 421-nm transition's linewidth, which agrees with previous
measurements. We summarize the laser cooling characteristics of these
transitions as well as other narrow cycling transitions that may prove useful
for cooling Dy.Comment: 6+ pages, 5 figures, 5 table
Unusually large polarizabilities and "new" atomic states in Ba
Electric polarizabilities of four low-J even-parity states and three low-J
odd-parity states of atomic barium in the range to $36,000\
^{-1}6s8p
^3P_{0,2}$ is suggested.Comment: 29 pages, 12 figure
Highly accurate calculations of the rotationally excited bound states in three-body systems
An effective optimization strategy has been developed to construct highly
accurate bound state wave functions in various three-body systems. Our
procedure appears to be very effective for computations of weakly bound states
and various excited states, including rotationally excited states, i.e. states
with . The efficiency of our procedure is illustrated by computations
of the excited states in the and muonic
molecular ions, states in the non-symmetric and
ions and and states in He atom(s)
Lippmann-Schwinger description of multiphoton ionization
We outline a formalism and develop a computational procedure to treat the
process of multiphoton ionization (MPI) of atomic targets in strong laser
fields. We treat the MPI process nonperturbatively as a decay phenomenon by
solving a coupled set of the integral Lippmann-Schwinger equations. As basic
building blocks of the theory we use a complete set of field-free atomic
states, discrete and continuous. This approach should enable us to provide both
the total and differential cross-sections of MPI of atoms with one or two
electrons. As an illustration, we apply the proposed procedure to a simple
model of MPI from a square well potential and to the hydrogen atom.Comment: 25 pages, 3 figure
Robust long-distance entanglement and a loophole-free Bell test with ions and photons
Two trapped ions that are kilometers apart can be entangled by the joint
detection of two photons, each coming from one of the ions, in a basis of
entangled states. Such a detection is possible with linear optical elements.
The use of two-photon interference allows entanglement distribution without
interferometric sensitivity to the path length of the photons. The present
method of creating entangled ions also opens up the possibility of a
loophole-free test of Bell's inequalities.Comment: published versio
Sensitivity coefficients to -variation for fine-structure transitions in Carbon-like ions
We calculate sensitivity coefficients to -variation for the
fine-structure transitions (1,0) and (2,1) within multiplet
of the Carbon-like ions C I, N II, O III, Na VI, Mg VII, and Si IX. These
transitions lie in the far infrared region and are in principle observable in
astrophysics for high redshifts z~10. This makes them very promising candidates
for the search for possible -variation on a cosmological timescale. In
such studies one of the most dangerous sources of systematic errors is
associated with isotope shifts. We calculate isotope shifts with the help of
relativistic mass shift operator and show that it may be significant for C I,
but rapidly decreases along the isoelectronic sequence and becomes very small
for Mg VII and Si IX.Comment: 5 page
- …