326 research outputs found

    Phylogeographic structure of common sage (Salvia officinalis L.) reveals microrefugia throughout the Balkans and colonizations of the Apennines

    Get PDF
    Studying the population-genetic and phylogeographic structures of a representative species of a particular geographical region can not only provide us with information regarding its evolutionary history, but also improve our understanding of the evolutionary processes underlying the patterns of species diversity in that area. By analysing eight highly polymorphic microsatellite loci and two chloroplast DNA regions, we have investigated the influence of Pleistocene climate fluctuations on the evolutionary history of Salvia officinalis L. (common sage). The populations with the highest genetic diversity were located in the central parts of the Balkan distribution range. A large group of closely related haplotypes was distributed throughout the Balkans and the central Apennines, while the private lineage occupied the southern Apennines. In addition, two highly differentiated lineages were scattered only over the Balkans. The results suggest that a single refugium of the studied species from the last glacial period was located in the central part of the range in the Balkans. Numerous microrefugia, probably spanning several glaciation cycles, were scattered across the Balkans, while colonisation of the Apennines from the Balkans occurred at least on two occasions

    Induction of Crystallization of Calcium Oxalate Dihydrate in Micellar Solutions of Anionic Surfactants

    Get PDF
    Calcium oxalate dihydrate (CaC2O4.(2+x)H2O; COD; x ≀ 0.5) does not readily crystallize from electrolytic solutions but appears as a component in crystalluria. In this paper, we review in vitro studies on the factors responsible for its nucleation and growth with special attention given to the role of surfactants. The following surfactants were tested: dodecyl ammonium chloride (cationic), octaethylene monohexadecylether (non-ionic), sodium dodecyl sulfate (SOS, anionic), dioctyl sulphosuccinate (AOT, anionic), and sodium cholate (NaC, anionic). The cationic and some of the anionic surfactants (SOS, AOT) induced different habit modifications of growing calcium oxalate crystals by preferential adsorption at different crystal faces. In addition, the anionic surfactants effectively induced crystallization of COD at the expense of COM, the proportion of COD in the precipitates abruptly increasing above a critical surfactant concentration, close to, but not necessarily identical with the respective CMC. A mechanism is proposed, whereby crystallization of COD in the presence of surfactants is a consequence of the inhibition of COM by preferential adsorption of surfactant hemimicelles (two-dimensional surface aggregates) at the surfaces of growing crystals

    Inclusive School Community: Why is it so Complex?

    Get PDF
    This paper addresses the question: why is it so hard for school communities to respond to diversity in learners, staff and parents in inclusive ways? The authors draw on theory and recent professional experience in Queensland, Australia, to offer four guiding principles that address traditional assumptions about learning that result in inequality of opportunity and outcomes for students. The authors suggest these principles to support the development of a more inclusive school community: (1) develop a learning community incorporating a critical friend; (2) value and collaborate with parents and the broader community; (3) engage students as citizens in school review and developΒ¬ment; and (4) support teachers’ critical engagement with inclusive ideals and practices. The authors describe how the principles can work in concert in a school community

    Systems of education governance and cultures of justice in Ireland, Scotland and Pakistan

    Get PDF
    This chapter compares the issue of cultures of justice in the systems of education governance in three education systems: Ireland, Scotland and Pakistan. The focus for the comparison are the current policies which shape the regulation of education. These policies were reviewed to identify key issues relating to social justice and equality, decision-making and accountability. From the analysis of each system, three central issues were identified: firstly, the improvement of a state education system; secondly, the degree of decentralisation and centralisation in governance structures and thirdly, the expectations placed on school leaders. The chapter concludes by discussing the tensions between the drive for system improvement and opportunities for school leaders to build strategies to address issues of inequality in schools

    Deconstructing Disability: A Philosophy for Inclusion

    Full text link
    This article offers derrida's deconstruction as a philosophy and practical strategy that challenges the assumed, factual nature of "disability" as a construct explaining human differences. The appeal of deconstruction lies in the contradictory philosophy currently articulated by the inclusion movement, a philosophy that simultaneously supports the disability construct as objective reality while calling for students "with disabilities" to be placed in educational settings designed for students considered nondisabled. This article proposes deconstruction as one coherent philosophical orientation for inclusion, an approach that critiques the political and moral hierarchy of ability and disability. A deconstructionist critique of disability is explained and demonstrated. Practical suggestions for the utilization of deconstruction by special educators are outlined.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68721/2/10.1177_074193259701800605.pd

    Reduced Bone Mass and Muscle Strength in Male 5Ξ±-Reductase Type 1 Inactivated Mice

    Get PDF
    Androgens are important regulators of bone mass but the relative importance of testosterone (T) versus dihydrotestosterone (DHT) for the activation of the androgen receptor (AR) in bone is unknown. 5Ξ±-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5Ξ±-reductase (type 1 and type 2), encoded by separate genes (Srd5a1 and Srd5a2). 5Ξ±-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5Ξ±-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5Ξ±-reductase type 1 for bone mass using Srd5a1βˆ’/βˆ’ mice. Four-month-old male Srd5a1βˆ’/βˆ’ mice had reduced trabecular bone mineral density (βˆ’36%, p<0.05) and cortical bone mineral content (βˆ’15%, p<0.05) but unchanged serum androgen levels compared with wild type (WT) mice. The cortical bone dimensions were reduced in the male Srd5a1βˆ’/βˆ’ mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05) in orchidectomized WT mice but not in orchidectomized Srd5a1βˆ’/βˆ’ mice. Male Srd5a1βˆ’/βˆ’ mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05). Female Srd5a1βˆ’/βˆ’ mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5Ξ±-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5Ξ±-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1βˆ’/βˆ’ mice, is an indirect effect mediated by elevated circulating androgen levels

    A20 Modulates Lipid Metabolism and Energy Production to Promote Liver Regeneration

    Get PDF
    Background: Liver Regeneration is clinically of major importance in the setting of liver injury, resection or transplantation. We have demonstrated that the NF-ΞΊ\kappaB inhibitory protein A20 significantly improves recovery of liver function and mass following extended liver resection (LR) in mice. In this study, we explored the Systems Biology modulated by A20 following extended LR in mice. Methodology and Principal Findings: We performed transcriptional profiling using Affymetrix-Mouse 430.2 arrays on liver mRNA retrieved from recombinant adenovirus A20 (rAd.A20) and rAd.Ξ²\betagalactosidase treated livers, before and 24 hours after 78% LR. A20 overexpression impacted 1595 genes that were enriched for biological processes related to inflammatory and immune responses, cellular proliferation, energy production, oxidoreductase activity, and lipid and fatty acid metabolism. These pathways were modulated by A20 in a manner that favored decreased inflammation, heightened proliferation, and optimized metabolic control and energy production. Promoter analysis identified several transcriptional factors that implemented the effects of A20, including NF-ΞΊ\kappaB, CEBPA, OCT-1, OCT-4 and EGR1. Interactive scale-free network analysis captured the key genes that delivered the specific functions of A20. Most of these genes were affected at basal level and after resection. We validated a number of A20's target genes by real-time PCR, including p21, the mitochondrial solute carriers SLC25a10 and SLC25a13, and the fatty acid metabolism regulator, peroxisome proliferator activated receptor alpha. This resulted in greater energy production in A20-expressing livers following LR, as demonstrated by increased enzymatic activity of cytochrome c oxidase, or mitochondrial complex IV. Conclusion: This Systems Biology-based analysis unravels novel mechanisms supporting the pro-regenerative function of A20 in the liver, by optimizing energy production through improved lipid/fatty acid metabolism, and down-regulated inflammation. These findings support pursuit of A20-based therapies to improve patients' outcomes in the context of extreme liver injury and extensive LR for tumor treatment or donation

    The sociology of disability and the struggle for inclusive education

    Get PDF
    This article charts the emergence of the sociology of disability and examines the areas of contestation. These have involved a series of erasures – of the body from debates on the social model of disability, of the Other from educational policies and practices, and of academics from political discourses and action. The paper considers the contribution of the sociology of disability to inclusive education and examines some of the objections currently being voiced. It ends with some reflections on the possibilities for academics within the sociology of disability to pursue alternative forms of engagement and outlines a series of duties that they might undertake

    Cancer stem cell metabolism: A potential target for cancer therapy

    Get PDF
    Β© 2016 The Author(s). Cancer Stem cells (CSCs) are a unipotent cell population present within the tumour cell mass. CSCs are known to be highly chemo-resistant, and in recent years, they have gained intense interest as key tumour initiating cells that may also play an integral role in tumour recurrence following chemotherapy. Cancer cells have the ability to alter their metabolism in order to fulfil bio-energetic and biosynthetic requirements. They are largely dependent on aerobic glycolysis for their energy production and also are associated with increased fatty acid synthesis and increased rates of glutamine utilisation. Emerging evidence has shown that therapeutic resistance to cancer treatment may arise due to dysregulation in glucose metabolism, fatty acid synthesis, and glutaminolysis. To propagate their lethal effects and maintain survival, tumour cells alter their metabolic requirements to ensure optimal nutrient use for their survival, evasion from host immune attack, and proliferation. It is now evident that cancer cells metabolise glutamine to grow rapidly because it provides the metabolic stimulus for required energy and precursors for synthesis of proteins, lipids, and nucleic acids. It can also regulate the activities of some of the signalling pathways that control the proliferation of cancer cells. This review describes the key metabolic pathways required by CSCs to maintain a survival advantage and highlights how a combined approach of targeting cellular metabolism in conjunction with the use of chemotherapeutic drugs may provide a promising strategy to overcome therapeutic resistance and therefore aid in cancer therapy
    • …
    corecore