79 research outputs found

    Current percolation and anisotropy in polycrystalline MgB2_2

    Full text link
    The influence of anisotropy on the transport current in MgB2_2 polycrystalline bulk samples and wires is discussed. A model for the critical current density is proposed, which is based on anisotropic London theory, grain boundary pinning and percolation theory. The calculated currents agree convincingly with experimental data and the fit parameters, especially the anisotropy, obtained from percolation theory agree with experiment or theoretical predictions.Comment: 5 pages, accepted for publication in Physical Review Letters (http://prl.aps.org/

    Superfluid-insulator transition and BCS-BEC crossover in dirty ultracold Fermi gas

    Full text link
    Superfluid-insulator transition in an ultracold Fermi gas in the external disorder potential of the amplitude V0V_0 is studied as a function of the concentration of the gas nn and magnetic field BB in the presence of the Feshbach resonance. We find the zero temperature phase diagrams in the plane (B,nB,n) at a given V0V_0 and in the plane (V0,n)(V_0, n) at a given BB. Our results for BEC side of the diagram are also valid for the superfluid-insulator transition in a Bose gas.Comment: Reference added, typos correcte

    Critical dynamics of ballistic and Brownian particles in a heterogeneous environment

    Full text link
    The dynamic properties of a classical tracer particle in a random, disordered medium are investigated close to the localization transition. For Lorentz models obeying Newtonian and diffusive motion at the microscale, we have performed large-scale computer simulations, demonstrating that universality holds at long times in the immediate vicinity of the transition. The scaling function describing the crossover from anomalous transport to diffusive motion is found to vary extremely slowly and spans at least 5 decades in time. To extract the scaling function, one has to allow for the leading universal corrections to scaling. Our findings suggest that apparent power laws with varying exponents generically occur and dominate experimentally accessible time windows as soon as the heterogeneities cover a decade in length scale. We extract the divergent length scales, quantify the spatial heterogeneities in terms of the non-Gaussian parameter, and corroborate our results by a thorough finite-size analysis.Comment: 14 page

    Percolation with excluded small clusters and Coulomb blockade in a granular system

    Full text link
    We consider dc-conductivity σ\sigma of a mixture of small conducting and insulating grains slightly below the percolation threshold, where finite clusters of conducting grains are characterized by a wide spectrum of sizes. The charge transport is controlled by tunneling of carriers between neighboring conducting clusters via short ``links'' consisting of one insulating grain. Upon lowering temperature small clusters (up to some TT-dependent size) become Coulomb blockaded, and are avoided, if possible, by relevant hopping paths. We introduce a relevant percolational problem of next-nearest-neighbors (NNN) conductivity with excluded small clusters and demonstrate (both numerically and analytically) that σ\sigma decreases as power law of the size of excluded clusters. As a physical consequence, the conductivity is a power-law function of temperature in a wide intermediate temperature range. We express the corresponding index through known critical indices of the percolation theory and confirm this relation numerically.Comment: 7 pages, 6 figure

    A Numerical Study of Transport and Shot Noise at 2D Hopping

    Full text link
    We have used modern supercomputer facilities to carry out extensive Monte Carlo simulations of 2D hopping (at negligible Coulomb interaction) in conductors with the completely random distribution of localized sites in both space and energy, within a broad range of the applied electric field EE and temperature TT, both within and beyond the variable-range hopping region. The calculated properties include not only dc current and statistics of localized site occupation and hop lengths, but also the current fluctuation spectrum. Within the calculation accuracy, the model does not exhibit 1/f1/f noise, so that the low-frequency noise at low temperatures may be characterized by the Fano factor FF. For sufficiently large samples, FF scales with conductor length LL as (Lc/L)α(L_c/L)^{\alpha}, where α=0.76±0.08<1\alpha=0.76\pm 0.08 < 1, and parameter LcL_c is interpreted as the average percolation cluster length. At relatively low EE, the electric field dependence of parameter LcL_c is compatible with the law LcE0.911L_c\propto E^{-0.911} which follows from directed percolation theory arguments.Comment: 17 pages, 8 figures; Fixed minor typos and updated reference

    Anisotropic generalization of Stinchcombe's solution for conductivity of random resistor network on a Bethe lattice

    Full text link
    Our study is based on the work of Stinchcombe [1974 \emph{J. Phys. C} \textbf{7} 179] and is devoted to the calculations of average conductivity of random resistor networks placed on an anisotropic Bethe lattice. The structure of the Bethe lattice is assumed to represent the normal directions of the regular lattice. We calculate the anisotropic conductivity as an expansion in powers of inverse coordination number of the Bethe lattice. The expansion terms retained deliver an accurate approximation of the conductivity at resistor concentrations above the percolation threshold. We make a comparison of our analytical results with those of Bernasconi [1974 \emph{Phys. Rev. B} \textbf{9} 4575] for the regular lattice.Comment: 14 pages, 2 figure

    Percolative properties of hard oblate ellipsoids of revolution with a soft shell

    Full text link
    We present an in-depth analysis of the geometrical percolation behavior in the continuum of random assemblies of hard oblate ellipsoids of revolution. Simulations where carried out by considering a broad range of aspect-ratios, from spheres up to aspect-ratio 100 plate-like objects, and with various limiting two particle interaction distances, from 0.05 times the major axis up to 4.0 times the major axis. We confirm the widely reported trend of a consistent lowering of the hard particle critical volume fraction with the increase of the aspect-ratio. Moreover, assimilating the limiting interaction distance to a shell of constant thickness surrounding the ellipsoids, we propose a simple relation based on the total excluded volume of these objects which allows to estimate the critical concentration from a quantity which is quasi-invariant over a large spectrum of limiting interaction distances. Excluded volume and volume quantities are derived explicitly.Comment: 11 pages, 8 figure

    Unusual thermoelectric behavior of packed crystalline granular metals

    Full text link
    Loosely packed granular materials are intensively studied nowadays. Electrical and thermal transport properties should reflect the granular structure as well as intrinsic properties. We have compacted crystalline CaAlCaAl based metallic grains and studied the electrical resistivity and the thermoelectric power as a function of temperature (TT) from 15 to 300K. Both properties show three regimes as a function of temperature. It should be pointed out : (i) The electrical resistivity continuously decreases between 15 and 235 K (ii) with various dependences, e.g. \simeq T3/4T^{-3/4} at low TT, while (iii) the thermoelectric power (TEP) is positive, (iv) shows a bump near 60K, and (v) presents a rather unusual square root of temperature dependence at low temperature. It is argued that these three regimes indicate a competition between geometric and thermal processes, - for which a theory seems to be missing in the case of TEP. The microchemical analysis results are also reported indicating a complex microstructure inherent to the phase diagram peritectic intricacies of this binary alloy.Comment: to be published in J. Appl. Phys.22 pages, 8 figure

    Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and Simulation

    Get PDF
    We investigate the effective conductivity (σe\sigma_e) of a class of amorphous media defined by the level-cut of a Gaussian random field. The three point solid-solid correlation function is derived and utilised in the evaluation of the Beran-Milton bounds. Simulations are used to calculate σe\sigma_e for a variety of fields and volume fractions at several different conductivity contrasts. Relatively large differences in σe\sigma_e are observed between the Gaussian media and the identical overlapping sphere model used previously as a `model' amorphous medium. In contrast σe\sigma_e shows little variability between different Gaussian media.Comment: 15 pages, 14 figure

    Critical Exponents for Diluted Resistor Networks

    Full text link
    An approach by Stephen is used to investigate the critical properties of randomly diluted resistor networks near the percolation threshold by means of renormalized field theory. We reformulate an existing field theory by Harris and Lubensky. By a decomposition of the principal Feynman diagrams we obtain a type of diagrams which again can be interpreted as resistor networks. This new interpretation provides for an alternative way of evaluating the Feynman diagrams for random resistor networks. We calculate the resistance crossover exponent ϕ\phi up to second order in ϵ=6d\epsilon=6-d, where dd is the spatial dimension. Our result ϕ=1+ϵ/42+4ϵ2/3087\phi=1+\epsilon /42 +4\epsilon^2 /3087 verifies a previous calculation by Lubensky and Wang, which itself was based on the Potts--model formulation of the random resistor network.Comment: 27 pages, 14 figure
    corecore