29 research outputs found

    Overexpression of Hydroxynitrile Lyase in Cassava Roots Elevates Protein and Free Amino Acids while Reducing Residual Cyanogen Levels

    Get PDF
    Cassava is the major source of calories for more than 250 million Sub-Saharan Africans, however, it has the lowest protein-to-energy ratio of any major staple food crop in the world. A cassava-based diet provides less than 30% of the minimum daily requirement for protein. Moreover, both leaves and roots contain potentially toxic levels of cyanogenic glucosides. The major cyanogen in cassava is linamarin which is stored in the vacuole. Upon tissue disruption linamarin is deglycosylated by the apolplastic enzyme, linamarase, producing acetone cyanohydrin. Acetone cyanohydrin can spontaneously decompose at pHs >5.0 or temperatures >35°C, or is enzymatically broken down by hydroxynitrile lyase (HNL) to produce acetone and free cyanide which is then volatilized. Unlike leaves, cassava roots have little HNL activity. The lack of HNL activity in roots is associated with the accumulation of potentially toxic levels of acetone cyanohydrin in poorly processed roots. We hypothesized that the over-expression of HNL in cassava roots under the control of a root-specific, patatin promoter would not only accelerate cyanogenesis during food processing, resulting in a safer food product, but lead to increased root protein levels since HNL is sequestered in the cell wall. Transgenic lines expressing a patatin-driven HNL gene construct exhibited a 2–20 fold increase in relative HNL mRNA levels in roots when compared with wild type resulting in a threefold increase in total root protein in 7 month old plants. After food processing, HNL overexpressing lines had substantially reduced acetone cyanohydrin and cyanide levels in roots relative to wild-type roots. Furthermore, steady state linamarin levels in intact tissues were reduced by 80% in transgenic cassava roots. These results suggest that enhanced linamarin metabolism contributed to the elevated root protein levels

    Transgenic Biofortification of the Starchy Staple Cassava (Manihot esculenta) Generates a Novel Sink for Protein

    Get PDF
    Although calorie dense, the starchy, tuberous roots of cassava provide the lowest sources of dietary protein within the major staple food crops (Manihot esculenta Crantz). (Montagnac JA, Davis CR, Tanumihardjo SA. (2009) Compr Rev Food Sci Food Saf 8:181–194). Cassava was genetically modified to express zeolin, a nutritionally balanced storage protein under control of the patatin promoter. Transgenic plants accumulated zeolin within de novo protein bodies localized within the root storage tissues, resulting in total protein levels of 12.5% dry weight within this tissue, a fourfold increase compared to non-transgenic controls. No significant differences were seen for morphological or agronomic characteristics of transgenic and wild type plants in the greenhouse and field trials, but relative to controls, levels of cyanogenic compounds were reduced by up to 55% in both leaf and root tissues of transgenic plants. Data described here represent a proof of concept towards the potential transformation of cassava from a starchy staple, devoid of storage protein, to one capable of supplying inexpensive, plant-based proteins for food, feed and industrial applications

    Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch

    Get PDF
    Storage roots of cassava (Manihot esculenta Crantz), a major subsistence crop of sub-Saharan Africa, are calorie rich but deficient in essential micronutrients, including provitamin A β-carotene. In this study, β-carotene concentrations in cassava storage roots were enhanced by coexpression of transgenes for deoxy-d-xylulose-5-phosphate synthase (DXS) and bacterial phytoene synthase (crtB), mediated by the patatin-type 1 promoter. Storage roots harvested from field-grown plants accumulated carotenoids to ≤50 lg/g DW, 15- to 20-fold increases relative to roots from nontransgenic plants. Approximately 85%–90% of these carotenoids accumulated as all-trans-β-carotene, the most nutritionally efficacious carotenoid. β-Carotene-accumulating storage roots displayed delayed onset of postharvest physiological deterioration, a major constraint limiting utilization of cassava products. Large metabolite changes were detected in β-carotene-enhanced storage roots. Most significantly, an inverse correlation was observed between β-carotene and dry matter content, with reductions of 50%–60% of dry matter content in the highest carotenoid-accumulating storage roots of different cultivars. Further analysis confirmed a concomitant reduction in starch content and increased levels of total fatty acids, triacylglycerols, soluble sugars and abscisic acid. Potato engineered to co-express DXS and crtB displayed a similar correlation between β-carotene accumulation, reduced dry matter and starch content and elevated oil and soluble sugars in tubers. Transcriptome analyses revealed a reduced expression of genes involved in starch biosynthesis including ADP-glucose pyrophosphorylase genes in transgenic, carotene-accumulating cassava roots relative to nontransgenic roots. These findings highlight unintended metabolic consequences of provitamin A biofortification of starch-rich organs and point to strategies for redirecting metabolic flux to restore starch production

    Ácido cianídrico em tecidos de mandioca em função da idade da planta e adubação nitrogenada

    Get PDF
    O objetivo deste trabalho foi avaliar o teor de ácido cianídrico em tecidos de mandioca, em função da idade da planta e níveis de adubação nitrogenada. Utilizou-se o delineamento experimental de blocos ao acaso, em arranjo de parcelas subdivididas, com quatro repetições. As doses de nitrogênio em cobertura (0, 30, 60, 150 e 330 kg ha-1) foram alocadas nas parcelas, e as épocas de avaliação (90, 120, 150, 180, 240, 300 e 360 dias após o plantio), nas subparcelas. Os teores de ácido cianídrico foram avaliados em tecidos da folha, caule, polpa e córtex da raiz da cultivar Aciolina. Os efeitos das doses de N e das épocas de avaliação foram independentes. Doses entre 219 e 241 kg ha-1 de N em cobertura proporcionam os maiores teores de ácido cianídrico, que variaram de 332 a 401 mg kg-1 de matéria fresca nos tecidos avaliados. O teor de ácido cianídrico nos tecidos reduz-se linearmente com a idade da planta. O córtex da raiz acumula o maior teor de ácido cianídrico, e a polpa da raiz o menor. Por ocasião da colheita, aos 360 dias após o plantio, essa cultivar é classificada como mandioca mansa

    Opportunities for biofortification of Cassava for Sub-Saharan Africa: The BioCassava Plus program

    Get PDF
    Cassava is an important staple crop in sub-Saharan Africa. Sub-Saharan Africa produced over 117 million tons of fresh roots of cassava in 2008, of which 95% was consumed as food; the starch provides >25% of dietary energy for an estimated 200 million Africans. Frequent consumers of cassava are at greater risk for malnutrition than consumers of other diets. A nutrition survey in cassava-consuming areas of Nigeria and Kenya revealed inadequate intake of vitamin A in 83% and 41% and inadequate iron intake in 43% and 78% of pre-school-aged children. Biofortification can remediate these nutritional deficiencies and once developed through breeding and genetic engineering will be self-sustaining, but it requires a substantial initial investment in research and dissemination, it is self-sustaining. BioCassava Plus is a cassava-biofortification project at the Donald Danforth Center

    Cassava (Manihot esculenta L.)

    No full text
    corecore