106 research outputs found
Construction of a map-based reference genome sequence for barley, Hordeum vulgare L.
Barley (Hordeum vulgare L.) is a cereal grass mainly used as animal fodder and raw material for the malting industry. The map-based reference genome sequence of barley cv. `Morex' was constructed by the International Barley Genome Sequencing Consortium (IBSC) using hierarchical shotgun sequencing. Here, we report the experimental and computational procedures to (i) sequence and assemble more than 80,000 bacterial artificial chromosome (BAC) clones along the minimum tiling path of a genome-wide physical map, (ii) find and validate overlaps between adjacent BACs, (iii) construct 4,265 non-redundant sequence scaffolds representing clusters of overlapping BACs, and (iv) order and orient these BAC clusters along the seven barley chromosomes using positional information provided by dense genetic maps, an optical map and chromosome conformation capture sequencing (Hi-C). Integrative access to these sequence and mapping resources is provided by the barley genome explorer (BARLEX).Peer reviewe
Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential
Rye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of this resource with a broad range of investigations. We present findings on cultivated rye's incomplete genetic isolation from wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control systems for hybrid breeding and the yield benefits of rye-wheat introgressions.Peer reviewe
The screens culture: impact on ADHD
Children’s use of electronic media, including Internet and video gaming, has increased dramatically to an average in the general population of roughly 3 h per day. Some children cannot control their Internet use leading to increasing research on “internet addiction.” The objective of this article is to review the research on ADHD as a risk factor for Internet addiction and gaming, its complications, and what research and methodological questions remain to be addressed. The literature search was done in PubMed and Psychinfo, as well as by hand. Previous research has demonstrated rates of Internet addiction as high as 25% in the population and that it is addiction more than time of use that is best correlated with psychopathology. Various studies confirm that psychiatric disorders, and ADHD in particular, are associated with overuse, with severity of ADHD specifically correlated with the amount of use. ADHD children may be vulnerable since these games operate in brief segments that are not attention demanding. In addition, they offer immediate rewards with a strong incentive to increase the reward by trying the next level. The time spent on these games may also exacerbate ADHD symptoms, if not directly then through the loss of time spent on more developmentally challenging tasks. While this is a major issue for many parents, there is no empirical research on effective treatment. Internet and off-line gaming overuse and addiction are serious concerns for ADHD youth. Research is limited by the lack of measures for youth or parents, studies of children at risk, and studies of impact and treatment
Global Variation of Nutritional Status in Children Undergoing Chronic Peritoneal Dialysis : A Longitudinal Study of the International Pediatric Peritoneal Dialysis Network
While children approaching end-stage kidney disease (ESKD) are considered at risk of uremic anorexia and underweight they are also exposed to the global obesity epidemic. We sought to investigate the variation of nutritional status in children undergoing chronic peritoneal dialysis (CPD) around the globe. The distribution and course of body mass index (BMI) standard deviation score over time was examined prospectively in 1001 children and adolescents from 35 countries starting CPD who were followed in the International Pediatric PD Network (IPPN) Registry. The overall prevalence of underweight, and overweight/obesity at start of CPD was 8.9% and 19.7%, respectively. Underweight was most prevalent in South and Southeast Asia (20%), Central Europe (16.7%) and Turkey (15.2%), whereas overweight and obesity were most common in the Middle East (40%) and the US (33%). BMI SDS at PD initiation was associated positively with current eGFR and gastrostomy feeding prior to PD start. Over the course of PD BMI SDS tended to increase on CPD in underweight and normal weight children, whereas it decreased in initially overweight patients. In infancy, mortality risk was amplified by obesity, whereas in older children mortality was markedly increased in association with underweight. Both underweight and overweight are prevalent in pediatric ESKD, with the prevalence varying across the globe. Late dialysis start is associated with underweight, while enteral feeding can lead to obesity. Nutritional abnormalities tend to attenuate with time on dialysis. Mortality risk appears increased with obesity in infants and with underweight in older children.Peer reviewe
Ground observations of a space laser for the assessment of its in-orbit performance
The wind mission Aeolus of the European Space Agency was a groundbreaking
achievement for Earth observation. Between 2018 and 2023, the space-borne lidar
instrument ALADIN onboard the Aeolus satellite measured atmospheric wind
profiles with global coverage which contributed to improving the accuracy of
numerical weather prediction. The precision of the wind observations, however,
declined over the course of the mission due to a progressive loss of the
atmospheric backscatter signal. The analysis of the root cause was supported by
the Pierre Auger Observatory in Argentina whose fluorescence detector
registered the ultraviolet laser pulses emitted from the instrument in space,
thereby offering an estimation of the laser energy at the exit of the
instrument for several days in 2019, 2020 and 2021. The reconstruction of the
laser beam not only allowed for an independent assessment of the Aeolus
performance, but also helped to improve the accuracy in the determination of
the laser beam's ground track on single pulse level. The results presented in
this paper set a precedent for the monitoring of space lasers by ground-based
telescopes and open new possibilities for the calibration of cosmic-ray
observatories.Comment: 10 pages, 10 figure
The Pierre Auger Observatory Open Data
The Pierre Auger Collaboration has embraced the concept of open access to
their research data since its foundation, with the aim of giving access to the
widest possible community. A gradual process of release began as early as 2007
when 1% of the cosmic-ray data was made public, along with 100% of the
space-weather information. In February 2021, a portal was released containing
10% of cosmic-ray data collected from 2004 to 2018, during Phase I of the
Observatory. The Portal included detailed documentation about the detection and
reconstruction procedures, analysis codes that can be easily used and modified
and, additionally, visualization tools. Since then the Portal has been updated
and extended. In 2023, a catalog of the 100 highest-energy cosmic-ray events
examined in depth has been included. A specific section dedicated to
educational use has been developed with the expectation that these data will be
explored by a wide and diverse community including professional and
citizen-scientists, and used for educational and outreach initiatives. This
paper describes the context, the spirit and the technical implementation of the
release of data by the largest cosmic-ray detector ever built, and anticipates
its future developments.Comment: 19 pages, 8 figure
Radio Measurements of the Depth of Air-Shower Maximum at the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA), part of the Pierre Auger
Observatory, is currently the largest array of radio antenna stations deployed
for the detection of cosmic rays, spanning an area of km with 153
radio stations. It detects the radio emission of extensive air showers produced
by cosmic rays in the MHz band. Here, we report the AERA measurements
of the depth of the shower maximum (), a probe for mass
composition, at cosmic-ray energies between to eV,
which show agreement with earlier measurements with the fluorescence technique
at the Pierre Auger Observatory. We show advancements in the method for radio
reconstruction by comparison to dedicated sets of CORSIKA/CoREAS
air-shower simulations, including steps of reconstruction-bias identification
and correction, which is of particular importance for irregular or sparse radio
arrays. Using the largest set of radio air-shower measurements to date, we show
the radio resolution as a function of energy, reaching a
resolution better than g cm at the highest energies, demonstrating
that radio measurements are competitive with the established
high-precision fluorescence technique. In addition, we developed a procedure
for performing an extensive data-driven study of systematic uncertainties,
including the effects of acceptance bias, reconstruction bias, and the
investigation of possible residual biases. These results have been
cross-checked with air showers measured independently with both the radio and
fluorescence techniques, a setup unique to the Pierre Auger Observatory.Comment: Submitted to Phys. Rev.
Demonstrating Agreement between Radio and Fluorescence Measurements of the Depth of Maximum of Extensive Air Showers at the Pierre Auger Observatory
We show, for the first time, radio measurements of the depth of shower
maximum () of air showers induced by cosmic rays that are
compared to measurements of the established fluorescence method at the same
location. Using measurements at the Pierre Auger Observatory we show full
compatibility between our radio and the previously published fluorescence data
set, and between a subset of air showers observed simultaneously with both
radio and fluorescence techniques, a measurement setup unique to the Pierre
Auger Observatory. Furthermore, we show radio resolution as a
function of energy and demonstrate the ability to make competitive
high-resolution measurements with even a sparse radio array.
With this, we show that the radio technique is capable of cosmic-ray mass
composition studies, both at Auger and at other experiments.Comment: Submitted to Phys. Rev. Let
- …