582 research outputs found
Stability of atoms and molecules in an ultrarelativistic Thomas-Fermi-Weizsaecker model
We consider the zero mass limit of a relativistic Thomas-Fermi-Weizsaecker
model of atoms and molecules. We find bounds for the critical nuclear charges
that ensure stability.Comment: 8 pages, LaTe
Newly qualified physical education teachersâ experiences of developing subject knowledge prior to, during and after a Postgraduate Certificate in Education course
Office for Standards in Education (OFSTED) inspections of secondary Postgraduate Certificate in Education (PGCE) physical education courses in England between 1996 and 1998 (OFSTED, 1999) were critical of student teachers' subject knowledge. The purpose of this study was to investigate the development of subject knowledge and influences on the development of that subject knowledge in a sample of three newly qualified teachers (NQTs) who had completed a PGCE physical education course in England. The research comprised semi-structured interviews and analysis of documentation. Among these three NQTs there were some similarities, but more differences in terms of the development of subject knowledge as well as different influences on the development of subject knowledge. These results suggest that teacher educators may need to be flexible in how they approach and support the development of student teachers' subject knowledge. Results also suggest that teacher educators should work more closely with colleagues teaching sports-related undergraduate degree courses to support the development of subject knowledge for those students who wish to progress to a PGCE physical education course
Assessing the role of bacterial innate and adaptive immunity as barriers to conjugative plasmids
Plasmids are ubiquitous mobile genetic elements, that can be either costly or beneficial for their bacterial host. In response to constant viral threat, bacteria have evolved various immune systems, such as the prevalent restriction modification (RM) (innate immunity) and CRISPR-Cas systems (adaptive immunity). At the molecular level, both systems also target plasmids, but the consequences of these interactions for plasmid spread are unclear. Using a modeling approach, we show that RM and CRISPR-Cas are effective as barriers against the spread of costly plasmids, but not against beneficial ones. Consequently, bacteria can profit from the selective advantages that beneficial plasmids confer even in the presence of bacterial immunity. While plasmids that are costly for bacteria may persist in the bacterial population for a certain period, RM and CRISPR-Cas can eventually drive them to extinction. Finally, we demonstrate that the selection pressure imposed by bacterial immunity on costly plasmids can be circumvented through a diversity of escape mechanisms and highlight how plasmid carriage might be common despite bacterial immunity. In summary, the population-level outcome of interactions between plasmids and defense systems in a bacterial population is closely tied to plasmid cost: Beneficial plasmids can persist at high prevalence in bacterial populations despite defense systems, while costly plasmids may face extinction
Dipoles in Graphene Have Infinitely Many Bound States
We show that in graphene charge distributions with non-vanishing dipole
moment have infinitely many bound states. The corresponding eigenvalues
accumulate at the edges of the gap faster than any power
Das asymptotische Verhalten der Grundzustandsenergie des Muellerfunktionals fuer schwere Atome
The ground state energy of the Mueller functional of large (neutral) atoms of
atomic number Z agrees with the quantum mechanical ground state energy up to
order o(Z to the 5/3).
-----
Die Grundzustandsenergie des Muellerfunktionals von grossen (neutralen)
Atomen der Ordnungszahl Z stimmt mit der quantenmechanischen
Grundzustandsenergie bis zur Ordnung o(Z hoch 5/3) ueberein.Comment: 10 pages, in Germa
Skills, strategies, sport and social responsibility : reconnecting physical education
Physical education is one of the more difficult subjects in the curriculum for generalist classroom teachers in primary schools to incorporate confidently into their teaching. In many primary schools, the generalist classroom teacher defers to a physical education specialist. This situation has both positive and negative features. In this context, this study brings together several prominent models of physical education teaching in an approach that enables the curriculum to be encountered through the interests of the children. This approach offers a generalist teacher, through appropriate professional development, a means for delivering a high-quality physical education programme, and also complements the repertoire of the specialist physical education teacher at both primary and secondary school levels.<br /
Action research in physical education: focusing beyond myself through cooperative learning
This paper reports on the pedagogical changes that I experienced as a teacher engaged in an action research project in which I designed and implemented an indirect, developmentally appropriate and childâcentred approach to my teaching. There have been repeated calls to expunge â or at least rationalise â the use of traditional, teacherâled practice in physical education. Yet despite the advocacy of many leading academics there is little evidence that such a change of approach is occurring. In my role as teacherâasâresearcher I sought to implement a new pedagogical approach, in the form of cooperative learning, and bring about a positive change in the form of enhanced pupil learning. Data collection included a reflective journal, postâteaching reflective analysis, pupil questionnaires, student interviews, document analysis, and nonâparticipant observations. The research team analysed the data using inductive analysis and constant comparison. Six themes emerged from the data: teaching and learning, reflections on cooperation, performance, time, teacher change, and social interaction. The paper argues that cooperative learning allowed me to place social and academic learning goals on an even footing, which in turn placed a focus on pupilsâ understanding and improvement of skills in athletics alongside their interpersonal development
Sequential decoupling of negative-energy states in Douglas-Kroll-Hess theory
Here, we review the historical development, current status, and prospects of
Douglas--Kroll--Hess theory as a quantum chemical relativistic electrons-only
theory.Comment: 15 page
Stability of Relativistic Matter With Magnetic Fields
Stability of matter with Coulomb forces has been proved for non-relativistic
dynamics, including arbitrarily large magnetic fields, and for relativistic
dynamics without magnetic fields. In both cases stability requires that the
fine structure constant alpha be not too large. It was unclear what would
happen for both relativistic dynamics and magnetic fields, or even how to
formulate the problem clearly. We show that the use of the Dirac operator
allows both effects, provided the filled negative energy `sea' is defined
properly. The use of the free Dirac operator to define the negative levels
leads to catastrophe for any alpha, but the use of the Dirac operator with
magnetic field leads to stability.Comment: This is an announcement of the work in cond-mat/9610195 (LaTeX
Stability and Instability of Relativistic Electrons in Classical Electro magnetic Fields
The stability of matter composed of electrons and static nuclei is
investigated for a relativistic dynamics for the electrons given by a suitably
projected Dirac operator and with Coulomb interactions. In addition there is an
arbitrary classical magnetic field of finite energy. Despite the previously
known facts that ordinary nonrelativistic matter with magnetic fields, or
relativistic matter without magnetic fields is already unstable when the fine
structure constant, is too large it is noteworthy that the combination of the
two is still stable provided the projection onto the positive energy states of
the Dirac operator, which defines the electron, is chosen properly. A good
choice is to include the magnetic field in the definition. A bad choice, which
always leads to instability, is the usual one in which the positive energy
states are defined by the free Dirac operator. Both assertions are proved here.Comment: LaTeX fil
- âŠ