15 research outputs found

    Xylanase and ÎČ-xylosidase production by Aspergillus ochraceus: new perspectives for the application of wheat straw autohydrolysis liquor

    Get PDF
    The xylanase biosynthesis is induced by its substrate—xylan. The high xylan content in some wastes such as wheat residues (wheat bran and wheat straw) makes them accessible and cheap sources of inducers to be mainly applied in great volumes of fermentation, such as those of industrial bioreactors. Thus, in this work, the main proposal was incorporated in the nutrient medium wheat straw particles decomposed to soluble compounds (liquor) through treatment of lignocellulosic materials in autohydrolysis process, as a strategy to increase and undervalue xylanase production by Aspergillus ochraceus. The wheat straw autohydrolysis liquor produced in several conditions was used as a sole carbon source or with wheat bran. The best conditions for xylanase and ÎČ-xylosidase production were observed when A. ochraceus was cultivated with 1% wheat bran added of 10% wheat straw liquor (produced after 15 min of hydrothermal treatment) as carbon source. This substrate was more favorable when compared with xylan, wheat bran, and wheat straw autohydrolysis liquor used separately. The application of this substrate mixture in a stirred tank bioreactor indicated the possibility of scaling up the process to commercial production.This work was supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP/Brazil), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq/Brazil), National System for Research on Biodiversity (SISBIOTA-Brazil, CNPq 563260/2010-6/FAPESP no. 2010/52322-3), and Fundacao para a Ciencia e a Tecnologia (FCT/Portugal)

    Audiovisual Non-Verbal Dynamic Faces Elicit Converging fMRI and ERP Responses

    Get PDF
    In an everyday social interaction we automatically integrate another’s facial movements and vocalizations, be they linguistic or otherwise. This requires audiovisual integration of a continual barrage of sensory input—a phenomenon previously well-studied with human audiovisual speech, but not with non-verbal vocalizations. Using both fMRI and ERPs, we assessed neural activity to viewing and listening to an animated female face producing non-verbal, human vocalizations (i.e. coughing, sneezing) under audio-only (AUD), visual-only (VIS) and audiovisual (AV) stimulus conditions, alternating with Rest (R). Underadditive effects occurred in regions dominant for sensory processing, which showed AV activation greater than the dominant modality alone. Right posterior temporal and parietal regions showed an AV maximum in which AV activation was greater than either modality alone, but not greater than the sum of the unisensory conditions. Other frontal and parietal regions showed Common-activation in which AV activation was the same as one or both unisensory conditions. ERP data showed an early superadditive effect (AV > AUD + VIS, no rest), mid-range underadditive effects for auditory N140 and face-sensitive N170, and late AV maximum and common-activation effects. Based on convergence between fMRI and ERP data, we propose a mechanism where a multisensory stimulus may be signaled or facilitated as early as 60 ms and facilitated in sensory-specific regions by increasing processing speed (at N170) and efficiency (decreasing amplitude in auditory and face-sensitive cortical activation and ERPs). Finally, higher-order processes are also altered, but in a more complex fashion
    corecore